DOI QR코드

DOI QR Code

Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

  • Seo, Youngsik (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Cho, Young-Sik (Department of Chemistry, Dankook University) ;
  • Huh, Young-Duk (Department of Chemistry, Dankook University) ;
  • Park, Heonyong (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2015.07.14
  • Accepted : 2015.09.19
  • Published : 2016.03.31

Abstract

Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions ($Cu^+$ and $Cu^{2+}$), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped $Cu_2O$ and CuO crystals were prepared to test the role of the two different ions, $Cu^+$ and $Cu^{2+}$, respectively. The $Cu_2O$ crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The $Cu_2O$ crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. $Cu_2O$ crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit $Cu_2O$-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of $Cu^+$ ions in the vascular system, where $Cu^+$ induces autophagy while $Cu^{2+}$ has no detected effect.

Keywords

References

  1. Abello, P.A., Fidler, S.A., Bulkley, G.B., and Buchman, T.G. (1994). Antioxidants modulate induction of programmed endothelial cell death (apoptosis) by endotoxin. Arch. Surg. 129, 134-140. https://doi.org/10.1001/archsurg.1994.01420260030003
  2. Ahn, S., Park, J., An, I., Jung, S.J., and Hwang, J. (2014). Transient receptor potential cation channel V1 (TRPV1) is degraded by starvation- and glucocorticoid-mediated autophagy. Mol. Cells 37, 257-263. https://doi.org/10.14348/molcells.2014.2384
  3. Altekin, E., Coker, C., Sişman, A.R., Onvural, B., Kuralay, F., and Kirimli, O. (2005). The relationship between trace elements and cardiac markers in acute coronary syndromes. J. Trace Elem. Med. Biol. 18, 235-242. https://doi.org/10.1016/j.jtemb.2004.12.002
  4. Bar-Or, D., Rael, L.T., Lau, E.P., Rao, N.K., Thomas, G.W., Winkler, J.V., Yukl, R.L., Kingston, R.G., and Curtis, C.G. (2001). An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem. Biophys. Res. Commun. 284, 856-862. https://doi.org/10.1006/bbrc.2001.5042
  5. Barbusinski, K. (2009). Fenton reaction-controversy concerning the chemistry. Ecol. Chem. Eng. S 16, 347-358.
  6. Barth, S., Glick, D., and Macleod, K.F. (2010). Autophagy: assays and artifacts. J. Pathol. 221, 117-124. https://doi.org/10.1002/path.2694
  7. Chevion, M., Jiang, Y., Har-El, R., Berenshtein, E., Uretzky, G., and Kitrossky, N. (1993). Copper and iron are mobilized following myocardial ischemia: possible predictive criteria for tissue injury. Proc. Natl. Acad. Sci. USA 90, 1102-1106. https://doi.org/10.1073/pnas.90.3.1102
  8. Choi, Y.J., Park, Y.J., Park, J.Y., Jeong, H.O., Kim, D.H., Ha, Y.M., Kim, J.M., Song, Y.M., Heo, H.S., Yu, B.P., et al. (2012). Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion. PLoS One 7, e43418. https://doi.org/10.1371/journal.pone.0043418
  9. Clarke, M., Bennett, M., and Littlewood, T. (2007). Cell death in the cardiovascular system. Heart 93, 659-664. https://doi.org/10.1136/hrt.2006.088203
  10. Diaz-Troya, S., Perez-Perez, M.E., Florencio, F.J., and Crespo, J.L. (2008). The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4, 851-865. https://doi.org/10.4161/auto.6555
  11. Dimmeler, S., and Zeiher, A.M. (2000). Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res. 87, 434-439. https://doi.org/10.1161/01.RES.87.6.434
  12. Dortwegt, R., and Maughan, E. (2001). The chemistry of copper in water and related studies planned at the advanced photon source. Conf. Proc. C0106181, 1456-1458
  13. Gallagher, C.H., and Reeve, V.E. (1971). Copper deficiency in the rat. Effect on liver and brain lipids. Aust. J. Exp. Biol. Med. Sci. 49, 453-461. https://doi.org/10.1038/icb.1971.49
  14. Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J. Pathol. 221, 3-12. https://doi.org/10.1002/path.2697
  15. He, C., Bassik, M.C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, J., Sun, Q., et al. (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515. https://doi.org/10.1038/nature10758
  16. Hordyjewska, A., Popiolek, L., and Kocot, J. (2014). The many "faces" of copper in medicine and treatment. Biometals 27, 611-621. https://doi.org/10.1007/s10534-014-9736-5
  17. Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J., and Hanahan, D. (2013). Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA. 110, 19507-19512. https://doi.org/10.1073/pnas.1318431110
  18. Kim, J., Park, J., Choi, S., Chi, S.G., Mowbray, A.L., Jo, H., and Park, H. (2008). X-linked inhibitor of apoptosis protein is an important regulator of vascular endothelial growth factor-dependent bovine aortic endothelial cell survival. Circ. Res. 102, 896-904. https://doi.org/10.1161/CIRCRESAHA.107.163667
  19. Kundu, M., Lindsten, T., Yang, C.Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, P.A., and Thompson, C.B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493-1502. https://doi.org/10.1182/blood-2008-02-137398
  20. Laha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., and Karmakar, P. (2014). Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim. Biophys. Acta 1840, 1-9. https://doi.org/10.1016/j.bbagen.2013.08.011
  21. Lee, H.R., Kim, J., Park, J., Ahn, S., Jeong, E., and Park, H. (2013). FERM domain promotes resveratrol-induced apoptosis in endothelial cells via inhibition of NO production. Biochem. Biophys. Res. Commun. 441, 891-896. https://doi.org/10.1016/j.bbrc.2013.10.154
  22. Linder, M.C., and Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 63, 797S-811S.
  23. Martinet, W., and De Meyer, G.R. (2009). Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ. Res. 104, 304-317. https://doi.org/10.1161/CIRCRESAHA.108.188318
  24. Palmer, D.A., Benezeth, P., and Simonson, J.M. (2004). Solubility of copper oxides in water and steam. In 14th International Conference on the Properties of Water and Steam in Kyoto pp. 491-496.
  25. Powell, S.R., Gurzenda, E.M., Wingertzahn, M.A., and Wapnir, R.A. (1999). Promotion of copper excretion from the isolated rat heart attenuates postischemic cardiac oxidative injury. Am. J. Physiol-Heart C. 277, H956-H962. https://doi.org/10.1152/ajpheart.1999.277.3.H956
  26. Rael, L.T., Rao, N.K., Thomas, G.W., Bar-Or, R., Curtis, C.G., and Bar-Or, D. (2007). Combined cupric- and cuprous-binding peptides are effective in preventing IL-8 release from endothelial cells and redox reactions. Biochem. Biophys. Res. Commun. 357, 543-548. https://doi.org/10.1016/j.bbrc.2007.03.182
  27. Rajendran, R., Ren, M., Ning, P., Huat, B. T. K., Halliwell, B., and Watt, F. (2007). Promotion of atherogenesis by copper or iron-Which is more likely? Biochem. Biophys. Res. Commun. 353, 6-10. https://doi.org/10.1016/j.bbrc.2006.11.038
  28. Rigo, A., Stevanato, R., Finazzi-Agro, A., and Rotilio, G. (1977). An attempt to evaluate the rate of the Haber-Weiss reaction by using OH radical scavengers. FEBS Lett. 80, 130-132. https://doi.org/10.1016/0014-5793(77)80422-5
  29. Robaye, B., Mosselmans, R., Fiers, W., Dumont, J.E., and Galand, P. (1991). Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am. J. Pathol. 138, 447-453.
  30. Ryter, S.W., Lee, S.J., Smith, A., and Choi, A.M. (2010). Autophagy in vascular disease. Proc. Am. Thorac. Soc. 7, 40-47. https://doi.org/10.1513/pats.200909-100JS
  31. Shaw, R.J. (2009). LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol. 196, 65-80. https://doi.org/10.1111/j.1748-1716.2009.01972.x
  32. Shimomura, H., Terasaki, F., Hayashi, T., Kitaura, Y., Isomura, T., and Suma, H. (2001). Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn. Circ. J. 65, 965-968. https://doi.org/10.1253/jcj.65.965
  33. Shokrzadeh, M., Ghaemian, A., Salehifar, E., Aliakbari, S., Saravi, S.S., and Ebrahimi, P. (2009). Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res. 127,116-123. https://doi.org/10.1007/s12011-008-8237-1
  34. Singh, I., Sagare, A.P., Coma, M., Perlmutter, D., Gelein, R., Bell, R.D., Deane, R.J., Zhong, E., Parisi, M., Ciszewski, J., et al. (2013). Low levels of copper disrupt brain amyloid-$\beta$ homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. USA 110, 14771-14776. https://doi.org/10.1073/pnas.1302212110
  35. Sun, T., Yan, Y., Zhao, Y., Guo, F., and Jiang, C. (2012). Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One 7, e43442. https://doi.org/10.1371/journal.pone.0043442
  36. Szabo, C., Ischiropoulos, H., and Radi, R. (2007). Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662-680. https://doi.org/10.1038/nrd2222
  37. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lullmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902-906. https://doi.org/10.1038/35022595
  38. Yu, K.N., Yoon, T.J., Minai-Tehrani, A., Kim, J.E., Park, S.J., Jeong, M.S., Ha, S.W., Lee, J.K., Kim, J.S., and Cho, M.H. (2013). Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol. In Vitro 27, 1187-1195. https://doi.org/10.1016/j.tiv.2013.02.010
  39. Zhao, J.G., Yang, S.H., and Yang, S.G. (2012). Controllable onestep synthesis of CuO, Cu2O and Cu. Cryst. Res.Technol. 47, 1064-1068. https://doi.org/10.1002/crat.201200189

Cited by

  1. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration vol.347, 2017, https://doi.org/10.1016/j.ccr.2017.06.004
  2. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells vol.25, 2016, https://doi.org/10.1016/j.jff.2016.05.018
  3. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu–O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos vol.11, pp.1, 2017, https://doi.org/10.1021/acsnano.6b06495
  4. Copper signalling: causes and consequences vol.16, pp.1, 2018, https://doi.org/10.1186/s12964-018-0277-3
  5. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway vol.12, pp.6, 2018, https://doi.org/10.1080/17435390.2018.1466932
  6. Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO2@Cu2O/Perfluorohexane Nanocomposites vol.10, pp.8, 2016, https://doi.org/10.1021/acsami.8b00112
  7. Lycopene Triggers Nrf2-AMPK Cross Talk to Alleviate Atrazine-Induced Nephrotoxicity in Mice vol.66, pp.46, 2016, https://doi.org/10.1021/acs.jafc.8b04341
  8. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies vol.21, pp.11, 2020, https://doi.org/10.3390/ijms21113862
  9. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver vol.294, pp.None, 2016, https://doi.org/10.1016/j.envpol.2021.118659