• Title/Summary/Keyword: Encryption key

Search Result 995, Processing Time 0.03 seconds

Similarity measurement based on Min-Hash for Preserving Privacy

  • Cha, Hyun-Jong;Yang, Ho-Kyung;Song, You-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.240-245
    • /
    • 2022
  • Because of the importance of the information, encryption algorithms are heavily used. Raw data is encrypted and secure, but problems arise when the key for decryption is exposed. In particular, large-scale Internet sites such as Facebook and Amazon suffer serious damage when user data is exposed. Recently, research into a new fourth-generation encryption technology that can protect user-related data without the use of a key required for encryption is attracting attention. Also, data clustering technology using encryption is attracting attention. In this paper, we try to reduce key exposure by using homomorphic encryption. In addition, we want to maintain privacy through similarity measurement. Additionally, holistic similarity measurements are time-consuming and expensive as the data size and scope increases. Therefore, Min-Hash has been studied to efficiently estimate the similarity between two signatures Methods of measuring similarity that have been studied in the past are time-consuming and expensive as the size and area of data increases. However, Min-Hash allowed us to efficiently infer the similarity between the two sets. Min-Hash is widely used for anti-plagiarism, graph and image analysis, and genetic analysis. Therefore, this paper reports privacy using homomorphic encryption and presents a model for efficient similarity measurement using Min-Hash.

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

ANALYSIS OF THE SECURITY OF GENERIC HOMOMORPHIC AUTHENTICATED ENCRYPTION

  • Jinsu Kim
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • Recently, a new type of encryption called Homomorphic Authenticated Encryption (HAE) has been proposed. This combines the functionality of homomorphic encryption with authentication. Several concrete HAE schemes have been developed and security results for homomorphic authenticated encryption, designed by combining a homomorphic message authentication scheme with a homomorphic secret-key encryption, have been partially reported. In this paper, we analyze the security of a design method that combines homomorphic message authentication and homomorphic encryption, with a focus on the encryption after authentication (EAA) type. The results of our analysis show that while non-forgeability and indistinguishability are maintained, strong non-forgeability is not.

Design of a Key Scheduler for Supporting the Parallel Encryption and Decryption Processes of HIGHT (HIGHT 암복호화 병렬 실행을 위한 Key Scheduler 설계)

  • Choi, Won-Jung;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • HIGHT is an 64-bit block cipher, which is suitable for low power and ultra-light implementation that are used in the network that needs the consideration of security aspects. This paper presents a parallel key scheduler that generates the whitening keys and subkeys simultaneously for both encryption and decryption processes. We construct the reverse LFSR and key generation blocks to generate the keys for decryption process. Then, the new key scheduler is made by sharing the common logics for encryption and decryption processes to minimize the increase in hardware complexity. From the simulation results, the logic size is increased 1.31 times compared to the conventional HIGHT. However, the performance of HIGHT including the proposed key scheduler can be increased by two times compared to the conventional counterpart.

Design and Implementation of Public key-based Video Conference System for Authentication and Encryption (공개키기반 사용자인증과 암호화를 적용한 영상회의 시스템 설계 및 구현)

  • Jung Yong-Deug;Lee Sang-Hun;Jin Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.971-980
    • /
    • 2004
  • This paper describes the design and implementation of the video conferencing system using public key infrastructure which is used for user authentication and encryption. Public key infrastructure reinforces the authentication process for conference participant, and the symmetric key system blocks malicious access to information and protect conference control information. This paper shows the implementation of the trans portation layer secure protocol in conformity with Korea public key authentication algorithm standard and symmetric encryption algorithm (DES, 3DES and AES) for media stream encryption. In this paper, we deal with two ways of protecting information : transportation layer secure protocol secures user authentication process and the conference control information; while public key-based authentication system protects personal information of users when they connect to the network. When distributing the session keys for encryption, Internet Key Exchange is used for P2P communication, and secure protocol is employed for 1 : N multi-user communication in the way of distributing the public key-based en-cryption key.

Public Key Encryption with Keyword Search in Multi-Receiver Setting (다중 수신자 환경에서 키워드 검색 가능한 공개키 암호시스템)

  • Rhee, Hyun-Sook;Park, Jong-Hwan;Rhee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • To provide the privacy of a keyword, a public key encryption with keyword search(PEKS) firstly was propsed by Boneh et al. The PEKS scheme enables that an email sender sends an encrypted email with receiver's public key to an email server and a server can obtain the relation between the given encrypted email and an encrypted query generated by a receiver. In this email system, we easily consider the situation that a user sends the one identical encrypted email to multi-receiver like as group e-mail. Hwang and Lee proposed a searchable public key encryption considering multi-receivers. To reduce the size of transmission data and the server's computation is important issue in multi-receiver setting. In this paper, we propose an efficient searchable public key encryption for multi-receiver (mPEKS) which is more efficient and reduces the server's pairing computation.

A kernel memory collecting method for efficent disk encryption key search (디스크 암호화 키의 효율적인 탐색을 위한 커널 메모리 수집 방법)

  • Kang, Youngbok;Hwang, Hyunuk;Kim, Kibom;Lee, Kyoungho;Kim, Minsu;Noh, Bongnam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.931-938
    • /
    • 2013
  • It is hard to extract original data from encrypted data before getting the password in encrypted data with disk encryption software. This encryption key of disk encryption software can be extract by using physical memory analysis. Searching encryption key time in the physical memory increases with the size of memory because it is intended for whole memory. But physical memory data includes a lot of data that is unrelated to encryption keys like system kernel objects and file data. Therefore, it needs the method that extracts valid data for searching keys by analysis. We provide a method that collect only saved memory parts of disk encrypting keys in physical memory by analyzing Windows kernel virtual address space. We demonstrate superiority because the suggested method experimentally reduces more of the encryption key searching space than the existing method.

Lightweight Individual Encryption for Secure Multicast Dissemination over WSNs (무선 센서네트워크에서 경량화 개인별 암호화를 사용한 멀티캐스트 전송기법)

  • Park, Taehyun;Kim, Seung Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.115-124
    • /
    • 2013
  • In this paper, we suggest a secure data dissemination by Lightweight Individual Encryption Multicast scheme over wireless sensor networks using the individual encryption method with Forward Error Correction instead of the group key encryption method. In wireless sensor networks, a sink node disseminates multicast data to the number of sensor nodes to update the up to date software such as network re-programming and here the group key encryption method is the general approach to provide a secure transmission. This group key encryption approach involves re-key management to provide a strong secure content distribution, however it is complicated to provide group key management services in wireless sensor networks due to limited resources of computing, storage, and communication. Although it is possible to control an individual node, the cost problem about individual encryption comes up and the individual encryption method is difficult to apply in multicast data transmission on wireless sensor networks. Therefore we only use 0.16% of individually encrypted packets to securely transmit data with the unicast to every node and the rest 99.84% non-encrypted encoded packets is transmitted with the multicast for network performance.

Efficient Offered Contents Using Broadcast Encryption (브로드캐스트 암호화를 이용한 효율적인 컨텐츠 제공)

  • 이덕규;이임영
    • Proceedings of the Korea Information Assurance Society Conference
    • /
    • 2004.05a
    • /
    • pp.65-70
    • /
    • 2004
  • The method of broadcast encryption has been applied to the transmission of digital information such as multimedia, software, and paid TV on the open network. In this broadcast encryption method, only previously authorized users can gain access to digital information. When broadcast message is transmitted, authorized users can first decode the session key using the previously given private key and get digital information using this session key. This way, users retrieve a message or a session key using the key transmitted by broadcasters. For their part, broadcasters need to generate and distribute keys. Broadcasters should also carry out efficient key renewal when users subscribe or un-subscriber. In this paper use a broadcast, and present the DRM model, using that look into the requirement about the contents and apply also the concept of a broadcast encryption. We offer the authority to copy as the number of reproduction to want to the user, and the low so that we were convenient because we used.

  • PDF

Optical Implementation of Triple DES Algorithm Based on Dual XOR Logic Operations

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.362-370
    • /
    • 2013
  • In this paper, we propose a novel optical implementation of a 3DES algorithm based on dual XOR logic operations for a cryptographic system. In the schematic architecture, the optical 3DES system consists of dual XOR logic operations, where XOR logic operation is implemented by using a free-space interconnected optical logic gate method. The main point in the proposed 3DES method is to make a higher secure cryptosystem, which is acquired by encrypting an individual private key separately, and this encrypted private key is used to decrypt the plain text from the cipher text. Schematically, the proposed optical configuration of this cryptosystem can be used for the decryption process as well. The major advantage of this optical method is that vast 2-D data can be processed in parallel very quickly regardless of data size. The proposed scheme can be applied to watermark authentication and can also be applied to the OTP encryption if every different private key is created and used for encryption only once. When a security key has data of $512{\times}256$ pixels in size, our proposed method performs 2,048 DES blocks or 1,024 3DES blocks cipher in this paper. Besides, because the key length is equal to $512{\times}256$ bits, $2^{512{\times}256}$ attempts are required to find the correct key. Numerical simulations show the results to be carried out encryption and decryption successfully with the proposed 3DES algorithm.