• Title/Summary/Keyword: Encryption Keys

Search Result 214, Processing Time 0.025 seconds

A New Cryptographic Algorithm for Safe Route Transversal of Data in Smart Cities using Rubik Cube

  • Chhabra, Arpit;Singhal, Niraj;Bansal, Manav;Rizvi, Syed Vilayat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.113-122
    • /
    • 2022
  • At the point when it is check out ourselves, it might track down various information in each turn or part of our lives. Truth be told, information is the new main thrust of our advanced civilization and in this every day, "information-driven" world, security is the significant angle to consider to guarantee dependability and accessibility of our organization frameworks. This paper includes a new cryptographic algorithm for safe route traversal for data of smart cities which is a contemporary, non-hash, non-straight, 3D encryption execution intended for having information securely scrambled in the interim having a subsequent theoretical layer of safety over it. Encryption generally takes an information string and creates encryption keys, which is the way to unscramble as well. In the interim in another strategy, on the off chance that one can sort out the encryption key, there are opportunities to unravel the information scrambled inside the information string. Be that as it may, in this encryption framework, the work over an encryption key (which is created naturally, henceforth no pre-assurance or uncertainty) just as the calculation produces a "state" in a way where characters are directed into the Rubik block design to disregard the information organization.

Group Key Management Scheme for Batch Operation (효율적인 Batch 처리를 위한 그룹키 관리 기술)

  • Kim, Dae-Youb;Huh, Mi-Suk;Ju, Hak-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.189-193
    • /
    • 2008
  • Digital Contents Services based on Internet are developing into an ubiquitous television that allows subscribers to be able to enjoy digital contents anytime and anywhere However, illegal copies and distributions of digital contents are also increasing proportionally. To guarantee the stability of contents service, many technologies are being developed and installed. The efficient scheme to manage content encryption keys is one of them. In this paper, we propose an improved key management scheme to manage the members of groups. The proposed scheme has a minimized transmission overhead for batch operation to renew content encryption keys.

Accountable Attribute-based Encryption with Public Auditing and User Revocation in the Personal Health Record System

  • Zhang, Wei;Wu, Yi;Xiong, Hu;Qin, Zhiguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.302-322
    • /
    • 2021
  • In the system of ciphertext policy attribute-based encryption (CP-ABE), only when the attributes of data user meets the access structure established by the encrypter, the data user can perform decryption operation. So CP-ABE has been widely used in personal health record system (PHR). However, the problem of key abuse consists in the CP-ABE system. The semi-trusted authority or the authorized user to access the system may disclose the key because of personal interests, resulting in illegal users accessing the system. Consequently, aiming at two kinds of existing key abuse problems: (1) semi-trusted authority redistributes keys to unauthorized users, (2) authorized users disclose keys to unauthorized users, we put forward a CP-ABE scheme that has authority accountability, user traceability and supports arbitrary monotonous access structures. Specifically, we employ an auditor to make a fair ruling on the malicious behavior of users. Besides, to solve the problem of user leaving from the system, we use an indirect revocation method based on trust tree to implement user revocation. Compared with other existing schemes, we found that our solution achieved user revocation at an acceptable time cost. In addition, our scheme is proved to be fully secure in the standard model.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

  • Seung-Ho Lim;Hyeok-Jin Lim;Seong-Cheon Park
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.116-130
    • /
    • 2024
  • In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual devices; thus, individual devices should protect data by performing secure operations on the data transmitted and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is required for designing and implementing embedded system-on-chip (SoC) modules through overhead and performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which enables the execution and verification of various aspects of the secure key generation module at the electronic system level and analyzes the system-level execution time, memory footprint, and performance, such as randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each module.

Two Attribute-based Broadcast Encryption Algorithms based on the Binary Tree (이진트리 기반의 속성기반 암호전송 알고리즘)

  • Lee, Moon Sik;Kim, HongTae;Hong, Jeoung Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • In this paper, we present two constructions of the attribute-based broadcast encryption(ABBE) algorithm. Attribute-based encryption(ABE) algorithm enables an access control mechanism over encrypted data by specifying access policies among private keys and ciphertexts. ABBE algorithm can be used to construct ABE algorithm with revocation mechanism. Revocation has a useful property that revocation can be done without affecting any non-revoked uers. The main difference between our algorithm and the classical ones derived from the complete subtree paradigm which is apt for military hierarchy. Our algorithm improve the efficiency from the previously best ABBE algorithm, in particular, our algorithm allows one to select or revoke users by sending ciphertext of constant size with respect to the number of attributes and by storing logarithm secret key size of the number of users. Therefore, our algorithm can be an option to applications where computation cost is a top priority and can be applied to military technologies in the near future.

Automatic Encryption Method within Kernel Level using Various Access Control Policy in UNIX system (유닉스 시스템에서 다양한 접근제어 정책을 이용한 커널 수준의 자동 암호화 기법)

  • Lim, Jae-Deok;Yu, Joon-Suk;Kim, Jeong-Nyeo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.387-396
    • /
    • 2003
  • Many studies have been done on secure kernel and encryption filesystem for system security. Secure kernel can protect user or system data from unauthorized and/or illegal accesses by applying various access control policy like ACL, MAC, RBAC and so on, but cannot protect user or system data from stealing backup media or disk itself. In addition to access control policy, there are many studies on encryption filesystem that encrypt file data within system level. However few studies have been done on combining access control policy and encryption filesystem. In this paper we proposed a new encryption filesystem that provides a transparency to the user by integrating encryption service into virtual filesystem layer within secure kernel that has various access control policies. Proposed encryption filesystem can provide a simple encryption key management architecture by using encryption keys based on classes of MAC policy and overcome a limit of physical data security of access control policy for stealing.

Design of a Key Transfer System Using SOAP for Multimedia Contents Protection (멀티미디어 콘텐츠 보호를 위한 SOAP을 이용한 키 전송 시스템 설계)

  • Lee, Keun-Wang;Kim, Jeong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2008
  • A proposed system can decrypt each contents block through a double buffer algorithm which can continually buffer contents by dividing a multimedia contents into some blocks and provides more improved method of encryption than existing system by being not capable of decrypting the whole multimedia contents if one key is exposed. Also, using digital signature and public encryption algorithm for mutual authentication between systems, this paper proposes the system which sends and encrypts symmetric keys for contents encryption through SOAP messages.

Design of High Speed Encryption/Decryption Hardware for Block Cipher ARIA (블록 암호 ARIA를 위한 고속 암호기/복호기 설계)

  • Ha, Seong-Ju;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1652-1659
    • /
    • 2008
  • With the increase of huge amount of data in network systems, ultimate high-speed network has become an essential requirement. In such systems, the encryption and decryption process for security becomes a bottle-neck. For this reason, the need of hardware implementation is strongly emphasized. In this study, a mixed inner and outer round pipelining architecture is introduced to achieve high speed performance of ARIA hardware. Multiplexers are used to control the lengths of rounds for 3 types of keys. Merging of encryption module and key initialization module increases the area efficiency. The proposed hardware architecture is implemented on reconfigurable hardware, Xilinx Virtex2-pro. The hardware architecture in this study shows that the area occupied 6437 slices and 128 BRAMs, and it is translated to throughput of 24.6Gbit/s with a maximum clock frequency of 192.9MHz.

Improved Identity-Based Broadcast Encryption (개선된 Identity 기반의 브로드캐스트 암호화 기법)

  • Kim, Ki-Tak;Park, Jong-Hwan;Lee, Dong-Hoon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.347-349
    • /
    • 2008
  • The primitive of Identity-Based Broadcast Encryption allows a sender to distribute session keys or messages for a dynamically changing set of receivers using the receiver's identity as a public key. We already know that the trade-off exists the efficiency between the public parameter size and the ciphertext size. So, if the ciphertext size is O(1), then the public parameter size may be O(n). Some of IBBE scheme take the public parameters as input in decryption phase. Thus, a decryption device (or client) has to store the public parameters or receive it. This means that a decryption device (or client) has to have the proper size storage. Recently, delerabl$\square$e proposed an IBBE which have the O(1) size ciphertexts and the O(n) size public parameters. In this paper, we present an IBBE scheme. In our construction the ciphertext size and the public parameter size are sub-linear in the total number of receivers, and the private key size is constant.

  • PDF

Key Generation and Management Scheme for Partial Encryption Based on Hash Tree Chain (부분 암호화를 위한 해쉬 트리 체인 기반 키 생성 및 관리 알고리즘)

  • Kim, Kyoung Min;Sohn, Kyu-Seek;Nam, Seung Yeob
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.77-83
    • /
    • 2016
  • A new key generation scheme is proposed to support partial encryption and partial decryption of data in cloud computing environment with a minimal key-related traffic overhead. Our proposed scheme employs a concept of hash tree chain to reduce the number of keys that need to be delivered to the decryption node. The performance of the proposed scheme is evaluated through simulation.