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Abstract 

In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual 

devices; thus, individual devices should protect data by performing secure operations on the data transmitted 

and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and 

fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network. 

However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is 

required for designing and implementing embedded system-on-chip (SoC) modules through overhead and 

performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key 

generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which 

enables the execution and verification of various aspects of the secure key generation module at the electronic 

system level and analyzes the system-level execution time, memory footprint, and performance, such as 

randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the 

execution of the PUF key and FHE encryption based on the unit time of each module. 
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1. Introduction 

The authentication and authority for data exchange have become important when transmitting data in 

networks that general users use in daily life, such as Internet-of-Things (IoT) devices or blockchain 

networks [1-3]. In the field of digital asset protection, such as non-fungible tokens (NFTs), as digital asset 

transactions linked to the real world become more active, it is important to ensure the privacy and safe 

use of sensitive information. As with the secure key of a general secure network system, a critical issue 

in generating a secure key for digital asset protection is the randomness and uniqueness of the secure key 

[4-6]. To guarantee this randomness and uniqueness, various research and development studies on secure 

key generation methods have been conducted by applying encryption and decryption with various 

features, such as a physical unclonable function (PUF) [7-9], fully homomorphic encryption (FHE) 

[10,11], and error correcting codes (ECCs), on various levels of systems ranging from networks to 

dedicated devices [12-14]. 
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In IoT- or blockchain-based network systems, secure keys are often stored on individual devices. 

Individual devices should protect data by performing secure key generation operations on the data 

transmitted and received over networks. In other words, the device should have a secure key generation 

module. Hence, the development and verification of a secure key generation module at the chip level 

within individual embedded devices has become important to ensure timely and proper secure key 

generation. Specifically, in NFT systems, along with virtual digital assets, it is necessary to develop a 

system-on-chip (SoC) that provides physical duplicability and guarantees uniqueness for real-world 

assets using appropriate methods and performance guarantees. However, it is difficult to verify the 

security and performance of the system by applying various secure key generation modules to hardware-

level SoCs and chips in a short period. 

In this paper, a SoC virtual platform (SoC VP), which includes a secure key generation module, was 

designed and implemented. The SoC VP flexibly applies various techniques of secure key generation and 

analyzes performance, such as randomness and uniqueness, as well as system-level performance, such as 

execution time and memory footprint. Our SoC virtual platform was implemented using SystemC [15], 

which enables the execution and verification of various aspects of the secure key generation module at 

the electronic system level (ESL) [16]. Specifically, the SoC virtual platform is configured based on a 

RISC-V-embedded processor [17,18] and main memory, has a secure key generation module as a 

controller, and is connected to the processor through a system bus. The secure key generation module 

consists of internal modules, such as PUF, FHE, number theoretic transform (NTT), Bose–Chaudhuri–

Hocquenghem (BCH), pseudo-random number generator (PRNG), and secure hash algorithms (SHA) to 

generate and encrypt/decrypt secure keys. The internal modules are connected through SystemC-based 

interfaces and channels so that system-level modeling is performed through the interfaces between the 

modules. This secure key generation module-based SoC virtual platform can be used as a preceding study 

for SoC platforms that provide secure keys in embedded devices. 

 

 

2. Background and Related Work 

This section describes related work on security modules and algorithms related to PUF and FHE and 

the background on the SoC VP with the secure key generation module for embedded devices. 

 

2.1 PUF 

Recently, in IoT or blockchain devices that perform network transmission of secure information such 

as personal or financial information, PUF has been widely selected as a generation method for unique 

identifiers in devices because it is regarded as a fingerprint for the device and the unique key cannot be 

exposed to the outside [19-21]. In principle, PUF is a technology for generating secure keys that cannot 

be physically duplicated owing to differences in the microstructures of semiconductor devices, even if 

they are produced in the same manufacturing process. Various studies and developments have been 

conducted to create PUFs using semiconductor devices as a medium, of which SRAM is a representative 

device [19]. If the best extraction method is required for an embedded device, highly secure 

authentication can be achieved when a PUF is used. Because there is a probability that errors will occur 
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whenever data are read from the original medium source, the PUF may consist of enrollment to generate 

a secure key based on the original source and reproduction of the generated key. In [20], the authors 

developed an encryption key generation method using fingerprints, and the authors [21] proposed a fuzzy 

extractor for a PUF with a hashing function. Research on embedded devices or systems to which PUF is 

applied is as follows. Kang et al. [22] used a PUF IC for RFID tags for frequency identification, and 

Ismari and Plusquellic [23] developed PUF IP using resistance variances. Akhundov et al. [24] used an 

SRAM PUF for public-key-based authentication for IoT systems and devices, and in [25], they developed 

an authentication mechanism for embedded systems using PUF modeling. In [26], the authors reviewed 

the industrial concerns regarding PUF operation. 

There are several issues associated with the implementation of a PUF on a virtual platform. While the 

original PUF obtains unique random values from real devices, we implemented PRNG to generate PUF 

at the enrollment stage. In addition, an ECC such as BCH is required to model error generation during 

the reading of PUF values and their corrections. We implemented these modules on a virtual platform for 

PUF to generate a secure unique key. 

 

2.2 Homomorphic Encryption and NTT 

Important personal data, such as medical or financial information, should not only be transmitted as 

encrypted from the device to the network, but should also be processed in an encrypted form that is not 

decrypted to ensure data security. FHE can process data without decryption; therefore, it is useful as a 

secure means of treating personal privacy data [27-29]. Homomorphic encryption enables personal 

information protection because there is no decryption of personal information in IoT or blockchain 

networks. However, homomorphic encryption requires high computational complexity, which limits its 

use in embedded devices. 

Homomorphic encryption of data, such as images or videos is time consuming; therefore, it is not 

executable in embedded devices. However, encryption can be simple for text data such as financial 

information or text messages. Additionally, many homomorphic encryption operations are based on 

polynomial arithmetic methods. If we use fast polynomial arithmetic operations, such as polynomial 

multiplication using the NTT [30], homomorphic encryption can be realized in embedded devices. 

Therefore, we implemented NTT- and inverse NTT (INTT)-based homomorphic encryption functions in 

the secure key generation module of the virtual platform. 

 

2.3 SoC Virtual Platform and Module 

The secure key generation module is designed for embedded devices for secure networks that require 

personal information protection. The module is composed of PUF and homomorphic encryption 

functions, which have recently attracted attention for generating secure keys and secure management of 

encrypted data. In summary, the SoC VP presented in this study is based on an embedded processor, and 

the secure key generation module is connected to the embedded processor as a controller through a system 

bus. The secure key generation module consists of a PUF part for generating a secure key that guarantees 

randomness and uniqueness and an FHE part that provides homomorphic encryption for the secure key 

and data. We analyzed the performance and resource usage for secure operations of secure key generation 

and encryption schemes on the implemented virtual platform. 
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3. SoC Virtual Platform for Secure Key Generation 

3.1 Overall Architecture 

The SoC VP was implemented using SystemC, which is capable of ESL modeling of embedded 

devices. SystemC enables interoperation between modules through channel connections, thread 

operations, and event processing. We designed and implemented a secure key generation module that 

enables secure operation in embedded devices through SystemC-based modeling. For fast prototyping of 

the secure key generation module of the SoC VP, we used the recently released RISC-V virtual platform 

as an open-source [31] that has already been used as a reference virtual platform prototype for other 

verifications [32,33]. Fig. 1 shows the overall architecture of a SoC VP. The SoC VP is based on an 

RISC-V processor. The major modules in the overall structural diagram include the RISC-V processor 

core, Main Memory, Flash Memory Controller, Interrupt Controller, and DMA Controller. Each module 

was connected to the RISC-V processor core through the SystemC TLM (transaction-level modeling) 2.0 

bus, and the processor core served as the master of each module. 

 

 
Fig. 1. Overall architecture of SoC virtual platform. 

 

The additional module designed and implemented in this study is the secure key generation module, or 

SecureKeyGen module. The SecureKeyGen module is also connected to the system bus, similar to the 

other modules, and the processor core controls the module by accessing the memory-mapped register 

allocated to the SecureKeyGen module through the TLM 2.0 bus. 

The modules used for secure key and homomorphic encryption operations in the virtual platform are 

the processor, main memory, flash memory, and SecureKeyGen modules. The application software for 

verifying the SoC VP can be executed as an RISC-V-based user-level program created through RISC-V 

cross-compilation. The application software performs two tasks: generating a secure PUF key and 

homomorphic encrypted data. To achieve this, the application software transmits specific commands to 

the virtual platform, waits until the task for the command is completed on the virtual platform, and 

receives a completion signal via an interrupt signal. When an interrupt is received, the status register of 
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the virtual platform is read to determine whether the instructions have been completed. 

In general, an embedded processor accesses the peripheral modules through the registers defined in the 

memory map. For instance, the memory map addresses of the SecureKeyGen, main memory, and flash 

memory modules, which are the main modules used in our virtual platform, are shown on the left side of 

Fig. 2. Application software running on the virtual platform can access each module by directly accessing 

each address area allocated to the memory map. The memory address sizes and the main contents of the 

three modules are as follows: the start address and size of the flash memory were 0 × 71000000 and 4 

kB, and the start and end addresses of the DRAM were 0 × 01000000 and 0 × 02000000, respectively. 

The start and end addresses of SecureKeyGen are 0 × 50002000 and 0 × 50004000, respectively, and 

SecureKeyGen has the following four registers within the address map—COMMAND (register for user 

command), STATUS (status register of SecureKeyGen module), DATALEN (register that records the 

size of data transmitted from the application), and DATA (register for exchanging data with the 

application). 

 

 

(a) (b) 

Fig. 2. (a) Memory map for SecureKeyGen, main memory, and flash memory modules, which are the 

main modules used in the virtual platform and (b) structure of the secure key generation module. 

 

3.2 Secure Key Generation Module 

The detailed structure of SecureKeyGen module is shown on the right of Fig. 2. This module is 

comprises SecureKeyGen, PUF, PRNG, FHE, NTT, and BCH modules. The SecureKeyGen module is 

connected to the TLM system bus in the form of a socket and operates as an initiator-target type 

connection with the RISC-V core. The internal modules are connected to each other by a SystemC in-out 

channel, and each module is synchronized by event delivery, which is a SystemC function. 

The SecureKeyGen module internally contains SecureKeyGen, PUF, FHE, and BCH modules as 

submodules. The SecureKeyGen module in SecureKeyGen has a port directly connected to TLM 2.0 

system bus plays a role in linking the RISC-V processor core and main memory through this port, and it 

is directly connected to the PUF and FHE modules through channels. The internal SecureKeyGen module 

has two SystemC threads: SKGThreadForPUF() and SKGThreadForFHE(). The first thread processes 

events delivered from the PUF module and the second thread processes events delivered from the FHE 

module. 
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The PUF module generates a secure PUF key by receiving commands from the SecureKeyGen module. 

We modeled and implemented a fuzzy extractor-based PUF enrollment and reproduction method [8,19-

21]. For data generation, random number generation was applied based on a pseudo-random number 

corresponding to the seed through the PRNG module. The PRNG module generates a pseudo-random 

number by receiving the seed value from the PUF, in which the Mersenne twister random number 

generation [34] algorithm was applied as the random number generation algorithm. 

The FHE module receives commands from SecureKeyGen module and performs homomorphic 

encryption. The NTT operation was applied to polynomial multiplication for homomorphic encryption. 

The FHE module performs data encryption through BCH encoding using NTT. The NTT module inside 

the FHE module performs NTT and convolution operations on the input data, and the results are sent 

back to the FHE module, where the NTT(conv)NTT and INTT operations are performed. The BCH 

module was implemented by referring to a binary BCH open-source based on the BCH error correction 

code [35]. Currently supported BCH code lengths are as follows; (n, k, t) = (255,63,30), (127,64,10), 

(255,115,21), (511,112,59), and so on, where n is 2m–1, that is, size of the multiplicative group of GF(2m), 

k is (n – deg(g(x))) which means dimension of the code (number of information bits/codeword), and t is 

error correcting capability (maximum number of errors the code corrects). 

 

3.3 PUF Enrollment and Reproduction 

The enrollment and reproduction sequences of the application software for verifying the secure PUF 

key using the virtual platform are shown in Fig. 3. The operational process is as follows: when the 

application software transmits the PUF_KEYGEN command to the virtual platform, the processor of the  

 

 
Fig. 3. Enrollment and reproduction sequence of the application software with the SecureKeyGen module 

on the virtual platform. 
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virtual platform transmits the command to the SecureKeyGen module. The module inside SecureKeyGen 

sends a PUF creation request with an identification seed to the PUF module and notifies the user of the 

event. The PUF module generates the PUF key. It requires the PRNG module to generate a PUF value 

based on a pseudo-random number. The PRNG module returns seed-based PUF values. 

In the enrollment phase, the PUF module requests BCH encoding from the BCH module and returns 

the encoded data. These are the PUF enrollment data, called helper data, and are stored in flash memory 

for future PUF reproduction. In the reproduction step, the PUF module generates a PUF key by 

performing BCH decoding using the helper and PRNG PUF data. After the reproduction step, a secure 

PUF key is generated. The SecureKeyGen module copies the generated PUF secure key to the main 

memory. The SecureKeyGen module generates an interrupt and informs the application software of PUF 

secure key generation. 

 

3.4 Homomorphic Encryption with NTT 

The homomorphic encryption sequence using the FHE and NTT modules is shown in Fig. 4. The 

operation of the application software through the virtual platform is described as follows: first, the 

application software copies the data for homomorphic encryption from the internal buffer to the main  

 

 
 

Fig. 4. Sequence of homomorphic encryption of data with the SecureKeyGen module on the virtual 

platform. 
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memory and then sends the FHE_Encrypt command to the virtual platform. The virtual platform 

processor sends the corresponding command to the SecureKeyGen module. The SecureKeyGen module  

copies the data in the main memory to the internal buffer of the module, sends a request for homomorphic 

encryption to the FHE module, and notifies the event. The FHE module requests the NTT module to 

perform homomorphic encryption of the received data, which is a polynomial multiplication using NTT 

consisting of NTT(conv)NTT → INTT operations. The NTT module performs the corresponding 

convolution and returns the results to the FHE module. 

To evaluate and verify the double-encryption security, we added the process of calculating the BCH 

encoding for the encrypted data. As shown in Fig. 4, the FHE module sends the encrypted data to the 

BCH module to request BCH encoding, and the BCH module performs the BCH encoding and returns it 

to the FHE module. The FHE module returns the BCH encryption data to the SecureKeyGen module, 

which copies the data to the main memory. The SecureKeyGen module then generates an interrupt to 

notify the application software of encryption completion. The application software copies the encrypted 

data from the main memory to its own buffer and writes them to the flash memory. 

 

 

4. Experiments and Verification 

4.1 Applications and Verification 

Based on the RISC-V virtual platform implemented in SystemC, we added secure key generation 

modules such as PUF and FHE. The RISC-V virtual platform consists of a virtual platform that configures 

the hardware system and an application software component that can be executed on the virtual platform. 

Therefore, it is possible to verify and conduct experiments using a specific application software on the 

virtual platform. 

First, we performed functional verification using simple application software for the implemented 

SecureKeyGen module. The verification software performs the following operations for the PUF and 

FHE: for PUF, it transmits the PUF generation command through the memory-mapped register of the 

SecureKeyGen and waits until it receives an interrupt signal, indicating that the PUF key has been 

generated from the SecureKeyGen module. Then, it reads the generated PUF key from the corresponding 

memory area and saves it in flash memory. The results of the functional verification of PUF key 

generation and retrieval are shown in Fig. 5. As the figure shows, a 64-bit PUF key is typically generated 

for a PUF set with BCH encoding (255, 63, 30). As the PUF key is a unique value generated using device-

specific information, its uniqueness and randomness must be guaranteed. The random number may not 

be unique depending on the seed, because the PUF implemented in this study was generated with a PRNG 

number generated using a random seed. To determine the uniqueness of PUF keys, we generated 50,000 

keys and evaluated their uniqueness. Fig. 6 presents the results of the uniqueness experiment with 50,000 

PUF keys. As shown in Fig. 6, the uniqueness maintains a value higher than 94% up to 50,000. However, 

as the number of PUF keys increases, the uniqueness gradually decreases. This is considered a limitation 

of the PRNG generator and the seed number integer value generation. It is expected that uniqueness can 

be further improved if the randomness is further increased by shuffling and shifting using an additional 

seed with a PRNG operation. 
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Fig. 5. Results of functional verification for PUF key generation and retrieval. 

 

 
Fig. 6. Results of randomness and uniqueness for PUF key generation and retrieval. 

 

 
Fig. 7. Results of functional verification for FHE encryption and retrieval of the FHE data. 
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Subsequently, FHE functional verification experiments were performed. To perform FHE encryption, 

the application software first copies the text data to the memory area and sends the FHE encryption 

command to the SecureKeyGen module. It waits until it receives an interrupt signal, indicating that the 

FHE encryption has been completed by the SecureKeyGen module. If the interrupt arrives, it reads the 

encrypted FHE data from the corresponding memory area and saves them to flash memory. The results 

of the functional verification of the FHE encryption and the retrieval of the FHE data are shown in Fig. 

7. As shown in Fig. 7, the FHE-encrypted data are created for the corresponding text data in code format. 

It was decrypted in addition to its original text format. 

 

4.2 Experiments on PUF Key Generation 

We conducted experiments to estimate the key generation times of the PUF module in the RISC-V 

virtual platform. The experiments executed the PUF key generation command in the software of the 

RISC-V virtual platform, received the result, and stored it in flash memory. The estimated simulation 

time was measured during this sequence. For proper estimation, time events provided by SystemC primitive 

were appropriately applied to the major modules and intermodule interfaces according to the features of 

the modules. The basic configuration values of the processor, memory, bus, and secure key generation 

modules for the time events are listed in Table 1. Based on the unit time for each module configured in 

the table, a PUF key generation simulation was performed, and the execution times were measured. 

We measured and estimated how the PUF key generation time changed as the BCH encoding levels 

changed. The experimental results of the estimated simulation time for the PUF key generation according 

to the BCH encoding configuration level are shown in Fig. 8(a). In this study, we configured three BCH 

levels: (127,64,10), (255,63,30), and (511,112,59). BCH encoding is important in PUF key generation, 

because the BCH encoding level is a crucial configuration parameter that reflects the randomness and 

error robustness of the PUF key. As shown in the results, the execution time increased as the BCH 

encoding scheme became more complex. For the PUF key, BCH encoding provides the following 

characteristics: the longer the BCH codeword length, the higher the randomness, the higher the error 

correctability, and the higher the probability of guaranteeing uniqueness. However, the higher the 

complexity of the BCH encoding scheme and the longer the codeword and PUF key lengths, the longer 

the execution time related to the PUF key. In addition, we experimented with generating a PUF key while 

changing the PUF key length for a specific BCH encoding. Fig. 8(b) shows the experimental results of 

the estimated simulation time for the PUF key generation at BCH (255,63,30) as the key length varies 

from 64 to 1024. By estimating the execution time for the three BCH encoding schemes, we can analyze 

the correlation between the PUV key length and the PUF operation time and provide insight into 

determining the appropriate PUF key length and BCH encoding scheme for designing a custom 

embedded device. 

 

Table 1. Basic configuration values of processor, memory, bus, and secure key generation modules for 

the time events 

Configuration parameter Unit time (ns) 

CPU cycle time 10 

CPU memory access 40 

Bus data rate per byte 10 

SKG execution cycle 20 
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(a) (b) 

Fig. 8. (a) Experimental results of estimated simulation time for PUF key generation according to the 

BCH encoding configurations (127,64,10), (255,63,30), and (511,112,59), and (b) estimated simulation 

time for PUF key length for BCH (255,63,30) encoding. 

 

In summary, the experiment and verification process confirmed that the PUF and FHE modules 

operated properly for the PUF generation and FHE encryption functions. The approximate execution 

times for the PUF and FHE modules were estimated based on the configuration unit time of each module 

on the virtual platform. Verification of the experiments was performed using the developed micro-level 

software. It is suitable for functional inspection and operation verification of operations such as internal 

PUF enrollment and regeneration, FHE NTT operations, and BCH modules. However, greater rationality 

of the methodology may be required in terms of system-level verification or performance evaluation. 

 

4.3 Discussion 

We presented experimental results on the uniqueness and execution time of FHE and PUF on the RISC-

V virtual platform, as well as their functional verifications. As inferred from the experimental results, it 

can be regarded as an acceptable level of performance verification when an embedded device operates in 

a small-scale network environment. For verification at a more sophisticated system level, it is necessary 

to perform encryption data transmission verification through FHE transmission and the reception of PUF 

data in a network system. For a more sophisticated analysis of the virtual platform simulation of the 

execution time, the execution of multiple instances and performance analysis are required. Additionally, 

there may be a lack of scalability validation in large-scale networks. If in a large-scale network, to be 

usable for modules on many devices, the probability of uniqueness should be higher, and a guaranteed 

execution time should be provided. The generation of random seeds is important for increasing the 

uniqueness. In our virtual platform, it is necessary to upgrade the seed generation algorithm in the PRNG, 

and it may also be necessary to increase the key size to enhance randomness. Enhancing the PRNG 

algorithm or increasing the key size also increases the complexity and execution time of the module, 

which also affects the scalability. We confirmed that the execution time gradually increased with key 

length in the previous experiment. To guarantee scalability of key generation time, it is necessary to 

increase parallelism through the parallel operation of modules and the pipelined data flow of the data 

path between modules. 
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5. Conclusion 

As the data used in an IoT system or blockchain contain valuable personal information, personal device 

authentication and data encryption are important for protecting personal information. A PUF is useful for 

generating keys that guarantee device uniqueness, and homomorphic encryption is effective for safe data 

distribution in networks. However, to include security functions, such as PUF and FHE, in embedded 

devices for IoT or blockchain systems, proper inspection is required to design and implement embedded 

SoC modules through overhead and performance analysis. 

In this paper, an embedded process-based virtual platform was designed and implemented for security 

key generation and homomorphic encryption of data. Our SoC VP, which simulates the RISC-V 

embedded processor, was implemented using SystemC, which can run and verify the secure key 

generation module at the ESL and analyze the system-level execution time, memory footprint, and 

performance, such as randomness and uniqueness. We experimentally verified the secure key generation 

module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each 

module. With the SoC virtual platform developed in this study, we further conducted research that utilizes 

the PUF and FHE for various functions required for data security and operations in IoT or blockchain 

systems. In future work, we will further secure methodological relationality by performing functional 

verification and performance evaluation of FHE-encrypted transmission and reception of PUF data at a 

large-scale networked system level. 
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