

www.kips.or.kr Copyright© 2024 KIPS

SoC Virtual Platform with Secure Key Generation

Module for Embedded Secure Devices

Seung-Ho Lim1,*, Hyeok-Jin Lim2, and Seong-Cheon Park2

Abstract

In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual

devices; thus, individual devices should protect data by performing secure operations on the data transmitted

and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and

fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network.

However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is

required for designing and implementing embedded system-on-chip (SoC) modules through overhead and

performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key

generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which

enables the execution and verification of various aspects of the secure key generation module at the electronic

system level and analyzes the system-level execution time, memory footprint, and performance, such as

randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the

execution of the PUF key and FHE encryption based on the unit time of each module.

Keywords

FHE, PUF, Secure Key Generation, SoC Virtual Platform

1. Introduction

The authentication and authority for data exchange have become important when transmitting data in

networks that general users use in daily life, such as Internet-of-Things (IoT) devices or blockchain

networks [1-3]. In the field of digital asset protection, such as non-fungible tokens (NFTs), as digital asset

transactions linked to the real world become more active, it is important to ensure the privacy and safe

use of sensitive information. As with the secure key of a general secure network system, a critical issue

in generating a secure key for digital asset protection is the randomness and uniqueness of the secure key

[4-6]. To guarantee this randomness and uniqueness, various research and development studies on secure

key generation methods have been conducted by applying encryption and decryption with various

features, such as a physical unclonable function (PUF) [7-9], fully homomorphic encryption (FHE)

[10,11], and error correcting codes (ECCs), on various levels of systems ranging from networks to

dedicated devices [12-14].

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received April 19, 2023; first revision September 22, 2023; second revision November 30, 2023; accepted November 30, 2023.
*Corresponding Author: Seung-Ho Lim (slim@hufs.ac.kr)
1 Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, Korea (slim@hufs.ac.kr)
2 Sudogwon Research Center, ETRI, Seongnam, Korea (hyeokjin.lim@etri.re.kr, scpark@etri.re.kr)

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.01.0099 ISSN 2092-805X (Electronic)

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 117

In IoT- or blockchain-based network systems, secure keys are often stored on individual devices.

Individual devices should protect data by performing secure key generation operations on the data

transmitted and received over networks. In other words, the device should have a secure key generation

module. Hence, the development and verification of a secure key generation module at the chip level

within individual embedded devices has become important to ensure timely and proper secure key

generation. Specifically, in NFT systems, along with virtual digital assets, it is necessary to develop a

system-on-chip (SoC) that provides physical duplicability and guarantees uniqueness for real-world

assets using appropriate methods and performance guarantees. However, it is difficult to verify the

security and performance of the system by applying various secure key generation modules to hardware-

level SoCs and chips in a short period.

In this paper, a SoC virtual platform (SoC VP), which includes a secure key generation module, was

designed and implemented. The SoC VP flexibly applies various techniques of secure key generation and

analyzes performance, such as randomness and uniqueness, as well as system-level performance, such as

execution time and memory footprint. Our SoC virtual platform was implemented using SystemC [15],

which enables the execution and verification of various aspects of the secure key generation module at

the electronic system level (ESL) [16]. Specifically, the SoC virtual platform is configured based on a

RISC-V-embedded processor [17,18] and main memory, has a secure key generation module as a

controller, and is connected to the processor through a system bus. The secure key generation module

consists of internal modules, such as PUF, FHE, number theoretic transform (NTT), Bose–Chaudhuri–

Hocquenghem (BCH), pseudo-random number generator (PRNG), and secure hash algorithms (SHA) to

generate and encrypt/decrypt secure keys. The internal modules are connected through SystemC-based

interfaces and channels so that system-level modeling is performed through the interfaces between the

modules. This secure key generation module-based SoC virtual platform can be used as a preceding study

for SoC platforms that provide secure keys in embedded devices.

2. Background and Related Work

This section describes related work on security modules and algorithms related to PUF and FHE and

the background on the SoC VP with the secure key generation module for embedded devices.

2.1 PUF

Recently, in IoT or blockchain devices that perform network transmission of secure information such

as personal or financial information, PUF has been widely selected as a generation method for unique

identifiers in devices because it is regarded as a fingerprint for the device and the unique key cannot be

exposed to the outside [19-21]. In principle, PUF is a technology for generating secure keys that cannot

be physically duplicated owing to differences in the microstructures of semiconductor devices, even if

they are produced in the same manufacturing process. Various studies and developments have been

conducted to create PUFs using semiconductor devices as a medium, of which SRAM is a representative

device [19]. If the best extraction method is required for an embedded device, highly secure

authentication can be achieved when a PUF is used. Because there is a probability that errors will occur

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

118 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

whenever data are read from the original medium source, the PUF may consist of enrollment to generate

a secure key based on the original source and reproduction of the generated key. In [20], the authors

developed an encryption key generation method using fingerprints, and the authors [21] proposed a fuzzy

extractor for a PUF with a hashing function. Research on embedded devices or systems to which PUF is

applied is as follows. Kang et al. [22] used a PUF IC for RFID tags for frequency identification, and

Ismari and Plusquellic [23] developed PUF IP using resistance variances. Akhundov et al. [24] used an

SRAM PUF for public-key-based authentication for IoT systems and devices, and in [25], they developed

an authentication mechanism for embedded systems using PUF modeling. In [26], the authors reviewed

the industrial concerns regarding PUF operation.

There are several issues associated with the implementation of a PUF on a virtual platform. While the

original PUF obtains unique random values from real devices, we implemented PRNG to generate PUF

at the enrollment stage. In addition, an ECC such as BCH is required to model error generation during

the reading of PUF values and their corrections. We implemented these modules on a virtual platform for

PUF to generate a secure unique key.

2.2 Homomorphic Encryption and NTT

Important personal data, such as medical or financial information, should not only be transmitted as

encrypted from the device to the network, but should also be processed in an encrypted form that is not

decrypted to ensure data security. FHE can process data without decryption; therefore, it is useful as a

secure means of treating personal privacy data [27-29]. Homomorphic encryption enables personal

information protection because there is no decryption of personal information in IoT or blockchain

networks. However, homomorphic encryption requires high computational complexity, which limits its

use in embedded devices.

Homomorphic encryption of data, such as images or videos is time consuming; therefore, it is not

executable in embedded devices. However, encryption can be simple for text data such as financial

information or text messages. Additionally, many homomorphic encryption operations are based on

polynomial arithmetic methods. If we use fast polynomial arithmetic operations, such as polynomial

multiplication using the NTT [30], homomorphic encryption can be realized in embedded devices.

Therefore, we implemented NTT- and inverse NTT (INTT)-based homomorphic encryption functions in

the secure key generation module of the virtual platform.

2.3 SoC Virtual Platform and Module

The secure key generation module is designed for embedded devices for secure networks that require

personal information protection. The module is composed of PUF and homomorphic encryption

functions, which have recently attracted attention for generating secure keys and secure management of

encrypted data. In summary, the SoC VP presented in this study is based on an embedded processor, and

the secure key generation module is connected to the embedded processor as a controller through a system

bus. The secure key generation module consists of a PUF part for generating a secure key that guarantees

randomness and uniqueness and an FHE part that provides homomorphic encryption for the secure key

and data. We analyzed the performance and resource usage for secure operations of secure key generation

and encryption schemes on the implemented virtual platform.

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 119

3. SoC Virtual Platform for Secure Key Generation

3.1 Overall Architecture

The SoC VP was implemented using SystemC, which is capable of ESL modeling of embedded

devices. SystemC enables interoperation between modules through channel connections, thread

operations, and event processing. We designed and implemented a secure key generation module that

enables secure operation in embedded devices through SystemC-based modeling. For fast prototyping of

the secure key generation module of the SoC VP, we used the recently released RISC-V virtual platform

as an open-source [31] that has already been used as a reference virtual platform prototype for other

verifications [32,33]. Fig. 1 shows the overall architecture of a SoC VP. The SoC VP is based on an

RISC-V processor. The major modules in the overall structural diagram include the RISC-V processor

core, Main Memory, Flash Memory Controller, Interrupt Controller, and DMA Controller. Each module

was connected to the RISC-V processor core through the SystemC TLM (transaction-level modeling) 2.0

bus, and the processor core served as the master of each module.

Fig. 1. Overall architecture of SoC virtual platform.

The additional module designed and implemented in this study is the secure key generation module, or

SecureKeyGen module. The SecureKeyGen module is also connected to the system bus, similar to the

other modules, and the processor core controls the module by accessing the memory-mapped register

allocated to the SecureKeyGen module through the TLM 2.0 bus.

The modules used for secure key and homomorphic encryption operations in the virtual platform are

the processor, main memory, flash memory, and SecureKeyGen modules. The application software for

verifying the SoC VP can be executed as an RISC-V-based user-level program created through RISC-V

cross-compilation. The application software performs two tasks: generating a secure PUF key and

homomorphic encrypted data. To achieve this, the application software transmits specific commands to

the virtual platform, waits until the task for the command is completed on the virtual platform, and

receives a completion signal via an interrupt signal. When an interrupt is received, the status register of

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

120 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

the virtual platform is read to determine whether the instructions have been completed.

In general, an embedded processor accesses the peripheral modules through the registers defined in the

memory map. For instance, the memory map addresses of the SecureKeyGen, main memory, and flash

memory modules, which are the main modules used in our virtual platform, are shown on the left side of

Fig. 2. Application software running on the virtual platform can access each module by directly accessing

each address area allocated to the memory map. The memory address sizes and the main contents of the

three modules are as follows: the start address and size of the flash memory were 0 × 71000000 and 4

kB, and the start and end addresses of the DRAM were 0 × 01000000 and 0 × 02000000, respectively.

The start and end addresses of SecureKeyGen are 0 × 50002000 and 0 × 50004000, respectively, and

SecureKeyGen has the following four registers within the address map—COMMAND (register for user

command), STATUS (status register of SecureKeyGen module), DATALEN (register that records the

size of data transmitted from the application), and DATA (register for exchanging data with the

application).

(a) (b)

Fig. 2. (a) Memory map for SecureKeyGen, main memory, and flash memory modules, which are the

main modules used in the virtual platform and (b) structure of the secure key generation module.

3.2 Secure Key Generation Module

The detailed structure of SecureKeyGen module is shown on the right of Fig. 2. This module is

comprises SecureKeyGen, PUF, PRNG, FHE, NTT, and BCH modules. The SecureKeyGen module is

connected to the TLM system bus in the form of a socket and operates as an initiator-target type

connection with the RISC-V core. The internal modules are connected to each other by a SystemC in-out

channel, and each module is synchronized by event delivery, which is a SystemC function.

The SecureKeyGen module internally contains SecureKeyGen, PUF, FHE, and BCH modules as

submodules. The SecureKeyGen module in SecureKeyGen has a port directly connected to TLM 2.0

system bus plays a role in linking the RISC-V processor core and main memory through this port, and it

is directly connected to the PUF and FHE modules through channels. The internal SecureKeyGen module

has two SystemC threads: SKGThreadForPUF() and SKGThreadForFHE(). The first thread processes

events delivered from the PUF module and the second thread processes events delivered from the FHE

module.

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 121

The PUF module generates a secure PUF key by receiving commands from the SecureKeyGen module.

We modeled and implemented a fuzzy extractor-based PUF enrollment and reproduction method [8,19-

21]. For data generation, random number generation was applied based on a pseudo-random number

corresponding to the seed through the PRNG module. The PRNG module generates a pseudo-random

number by receiving the seed value from the PUF, in which the Mersenne twister random number

generation [34] algorithm was applied as the random number generation algorithm.

The FHE module receives commands from SecureKeyGen module and performs homomorphic

encryption. The NTT operation was applied to polynomial multiplication for homomorphic encryption.

The FHE module performs data encryption through BCH encoding using NTT. The NTT module inside

the FHE module performs NTT and convolution operations on the input data, and the results are sent

back to the FHE module, where the NTT(conv)NTT and INTT operations are performed. The BCH

module was implemented by referring to a binary BCH open-source based on the BCH error correction

code [35]. Currently supported BCH code lengths are as follows; (n, k, t) = (255,63,30), (127,64,10),

(255,115,21), (511,112,59), and so on, where n is 2m–1, that is, size of the multiplicative group of GF(2m),

k is (n – deg(g(x))) which means dimension of the code (number of information bits/codeword), and t is

error correcting capability (maximum number of errors the code corrects).

3.3 PUF Enrollment and Reproduction

The enrollment and reproduction sequences of the application software for verifying the secure PUF

key using the virtual platform are shown in Fig. 3. The operational process is as follows: when the

application software transmits the PUF_KEYGEN command to the virtual platform, the processor of the

Fig. 3. Enrollment and reproduction sequence of the application software with the SecureKeyGen module

on the virtual platform.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

122 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

virtual platform transmits the command to the SecureKeyGen module. The module inside SecureKeyGen

sends a PUF creation request with an identification seed to the PUF module and notifies the user of the

event. The PUF module generates the PUF key. It requires the PRNG module to generate a PUF value

based on a pseudo-random number. The PRNG module returns seed-based PUF values.

In the enrollment phase, the PUF module requests BCH encoding from the BCH module and returns

the encoded data. These are the PUF enrollment data, called helper data, and are stored in flash memory

for future PUF reproduction. In the reproduction step, the PUF module generates a PUF key by

performing BCH decoding using the helper and PRNG PUF data. After the reproduction step, a secure

PUF key is generated. The SecureKeyGen module copies the generated PUF secure key to the main

memory. The SecureKeyGen module generates an interrupt and informs the application software of PUF

secure key generation.

3.4 Homomorphic Encryption with NTT

The homomorphic encryption sequence using the FHE and NTT modules is shown in Fig. 4. The

operation of the application software through the virtual platform is described as follows: first, the

application software copies the data for homomorphic encryption from the internal buffer to the main

Fig. 4. Sequence of homomorphic encryption of data with the SecureKeyGen module on the virtual

platform.

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 123

memory and then sends the FHE_Encrypt command to the virtual platform. The virtual platform

processor sends the corresponding command to the SecureKeyGen module. The SecureKeyGen module

copies the data in the main memory to the internal buffer of the module, sends a request for homomorphic

encryption to the FHE module, and notifies the event. The FHE module requests the NTT module to

perform homomorphic encryption of the received data, which is a polynomial multiplication using NTT

consisting of NTT(conv)NTT → INTT operations. The NTT module performs the corresponding

convolution and returns the results to the FHE module.

To evaluate and verify the double-encryption security, we added the process of calculating the BCH

encoding for the encrypted data. As shown in Fig. 4, the FHE module sends the encrypted data to the

BCH module to request BCH encoding, and the BCH module performs the BCH encoding and returns it

to the FHE module. The FHE module returns the BCH encryption data to the SecureKeyGen module,

which copies the data to the main memory. The SecureKeyGen module then generates an interrupt to

notify the application software of encryption completion. The application software copies the encrypted

data from the main memory to its own buffer and writes them to the flash memory.

4. Experiments and Verification

4.1 Applications and Verification

Based on the RISC-V virtual platform implemented in SystemC, we added secure key generation

modules such as PUF and FHE. The RISC-V virtual platform consists of a virtual platform that configures

the hardware system and an application software component that can be executed on the virtual platform.

Therefore, it is possible to verify and conduct experiments using a specific application software on the

virtual platform.

First, we performed functional verification using simple application software for the implemented

SecureKeyGen module. The verification software performs the following operations for the PUF and

FHE: for PUF, it transmits the PUF generation command through the memory-mapped register of the

SecureKeyGen and waits until it receives an interrupt signal, indicating that the PUF key has been

generated from the SecureKeyGen module. Then, it reads the generated PUF key from the corresponding

memory area and saves it in flash memory. The results of the functional verification of PUF key

generation and retrieval are shown in Fig. 5. As the figure shows, a 64-bit PUF key is typically generated

for a PUF set with BCH encoding (255, 63, 30). As the PUF key is a unique value generated using device-

specific information, its uniqueness and randomness must be guaranteed. The random number may not

be unique depending on the seed, because the PUF implemented in this study was generated with a PRNG

number generated using a random seed. To determine the uniqueness of PUF keys, we generated 50,000

keys and evaluated their uniqueness. Fig. 6 presents the results of the uniqueness experiment with 50,000

PUF keys. As shown in Fig. 6, the uniqueness maintains a value higher than 94% up to 50,000. However,

as the number of PUF keys increases, the uniqueness gradually decreases. This is considered a limitation

of the PRNG generator and the seed number integer value generation. It is expected that uniqueness can

be further improved if the randomness is further increased by shuffling and shifting using an additional

seed with a PRNG operation.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

124 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Fig. 5. Results of functional verification for PUF key generation and retrieval.

Fig. 6. Results of randomness and uniqueness for PUF key generation and retrieval.

Fig. 7. Results of functional verification for FHE encryption and retrieval of the FHE data.

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 125

Subsequently, FHE functional verification experiments were performed. To perform FHE encryption,

the application software first copies the text data to the memory area and sends the FHE encryption

command to the SecureKeyGen module. It waits until it receives an interrupt signal, indicating that the

FHE encryption has been completed by the SecureKeyGen module. If the interrupt arrives, it reads the

encrypted FHE data from the corresponding memory area and saves them to flash memory. The results

of the functional verification of the FHE encryption and the retrieval of the FHE data are shown in Fig.

7. As shown in Fig. 7, the FHE-encrypted data are created for the corresponding text data in code format.

It was decrypted in addition to its original text format.

4.2 Experiments on PUF Key Generation

We conducted experiments to estimate the key generation times of the PUF module in the RISC-V

virtual platform. The experiments executed the PUF key generation command in the software of the

RISC-V virtual platform, received the result, and stored it in flash memory. The estimated simulation

time was measured during this sequence. For proper estimation, time events provided by SystemC primitive

were appropriately applied to the major modules and intermodule interfaces according to the features of

the modules. The basic configuration values of the processor, memory, bus, and secure key generation

modules for the time events are listed in Table 1. Based on the unit time for each module configured in

the table, a PUF key generation simulation was performed, and the execution times were measured.

We measured and estimated how the PUF key generation time changed as the BCH encoding levels

changed. The experimental results of the estimated simulation time for the PUF key generation according

to the BCH encoding configuration level are shown in Fig. 8(a). In this study, we configured three BCH

levels: (127,64,10), (255,63,30), and (511,112,59). BCH encoding is important in PUF key generation,

because the BCH encoding level is a crucial configuration parameter that reflects the randomness and

error robustness of the PUF key. As shown in the results, the execution time increased as the BCH

encoding scheme became more complex. For the PUF key, BCH encoding provides the following

characteristics: the longer the BCH codeword length, the higher the randomness, the higher the error

correctability, and the higher the probability of guaranteeing uniqueness. However, the higher the

complexity of the BCH encoding scheme and the longer the codeword and PUF key lengths, the longer

the execution time related to the PUF key. In addition, we experimented with generating a PUF key while

changing the PUF key length for a specific BCH encoding. Fig. 8(b) shows the experimental results of

the estimated simulation time for the PUF key generation at BCH (255,63,30) as the key length varies

from 64 to 1024. By estimating the execution time for the three BCH encoding schemes, we can analyze

the correlation between the PUV key length and the PUF operation time and provide insight into

determining the appropriate PUF key length and BCH encoding scheme for designing a custom

embedded device.

Table 1. Basic configuration values of processor, memory, bus, and secure key generation modules for

the time events

Configuration parameter Unit time (ns)

CPU cycle time 10

CPU memory access 40

Bus data rate per byte 10

SKG execution cycle 20

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

126 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

(a) (b)

Fig. 8. (a) Experimental results of estimated simulation time for PUF key generation according to the

BCH encoding configurations (127,64,10), (255,63,30), and (511,112,59), and (b) estimated simulation

time for PUF key length for BCH (255,63,30) encoding.

In summary, the experiment and verification process confirmed that the PUF and FHE modules

operated properly for the PUF generation and FHE encryption functions. The approximate execution

times for the PUF and FHE modules were estimated based on the configuration unit time of each module

on the virtual platform. Verification of the experiments was performed using the developed micro-level

software. It is suitable for functional inspection and operation verification of operations such as internal

PUF enrollment and regeneration, FHE NTT operations, and BCH modules. However, greater rationality

of the methodology may be required in terms of system-level verification or performance evaluation.

4.3 Discussion

We presented experimental results on the uniqueness and execution time of FHE and PUF on the RISC-

V virtual platform, as well as their functional verifications. As inferred from the experimental results, it

can be regarded as an acceptable level of performance verification when an embedded device operates in

a small-scale network environment. For verification at a more sophisticated system level, it is necessary

to perform encryption data transmission verification through FHE transmission and the reception of PUF

data in a network system. For a more sophisticated analysis of the virtual platform simulation of the

execution time, the execution of multiple instances and performance analysis are required. Additionally,

there may be a lack of scalability validation in large-scale networks. If in a large-scale network, to be

usable for modules on many devices, the probability of uniqueness should be higher, and a guaranteed

execution time should be provided. The generation of random seeds is important for increasing the

uniqueness. In our virtual platform, it is necessary to upgrade the seed generation algorithm in the PRNG,

and it may also be necessary to increase the key size to enhance randomness. Enhancing the PRNG

algorithm or increasing the key size also increases the complexity and execution time of the module,

which also affects the scalability. We confirmed that the execution time gradually increased with key

length in the previous experiment. To guarantee scalability of key generation time, it is necessary to

increase parallelism through the parallel operation of modules and the pipelined data flow of the data

path between modules.

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 127

5. Conclusion

As the data used in an IoT system or blockchain contain valuable personal information, personal device

authentication and data encryption are important for protecting personal information. A PUF is useful for

generating keys that guarantee device uniqueness, and homomorphic encryption is effective for safe data

distribution in networks. However, to include security functions, such as PUF and FHE, in embedded

devices for IoT or blockchain systems, proper inspection is required to design and implement embedded

SoC modules through overhead and performance analysis.

In this paper, an embedded process-based virtual platform was designed and implemented for security

key generation and homomorphic encryption of data. Our SoC VP, which simulates the RISC-V

embedded processor, was implemented using SystemC, which can run and verify the secure key

generation module at the ESL and analyze the system-level execution time, memory footprint, and

performance, such as randomness and uniqueness. We experimentally verified the secure key generation

module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each

module. With the SoC virtual platform developed in this study, we further conducted research that utilizes

the PUF and FHE for various functions required for data security and operations in IoT or blockchain

systems. In future work, we will further secure methodological relationality by performing functional

verification and performance evaluation of FHE-encrypted transmission and reception of PUF data at a

large-scale networked system level.

Acknowledgement

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant

funded by the Korean government (No. 22ZT1100, ICT convergence technology support and

development based on local industry in the metropolitan area). This work was supported by the National

Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-

2021R1F1A1048026). This work was supported by Hankuk University of Foreign Studies Research

Fund.

References

[1] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-based secure communication protocol for

IoT,” ACM Transactions on Embedded Computing Systems, vol. 16, no. 3, article no. 67, 2017.

https://doi.org/10.1145/3005715

[2] Y. Zhang, B. Li, Y. Wang, J. Wu, and P. Yuan, “A blockchain-based user remote autentication scheme in IoT

systems using physical unclonable functions,” in Proceedings of 2020 IEEE 5th International Conference on

Signal and Image Processing (ICSIP), Nanjing, China, 2020, pp. 1100-1105.

https://doi.org/10.1109/ICSIP49896.2020.9339402

[3] Z. Li, Y. Chu, X. Liu, Y. Zhang, J. Feng, and X. Xiang, “Physical unclonable function based identity

management for IoT with blockchain,” Procedia Computer Science, vol. 198, pp. 454-459, 2022.

https://doi.org/10.1016/j.procs.2021.12.269

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

128 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

[4] D. Kim, U. Jo, Y. Kim, Y. E. Eko, and H. Kim, “Design and implementation of a blockchain based

interworking of oneM2M and LWM2M IoT systems,” Journal of Information Processing Systems, vol. 19,

no. 1, pp. 89-97, 2023. https://doi.org/10.3745/JIPS.01.0093

[5] Z. Siddiqui, J. Gao, and M. K. Khan, “An improved lightweight PUF–PKI digital certificate authentication

scheme for the Internet of Things,” IEEE Internet of Things Journal, vol. 9, no. 20, pp. 19744-19756, 2022.

https://doi.org/10.1109/JIOT.2022.3168726

[6] H. H. Kim and J. Yoo, “Analysis of security vulnerabilities for IoT devices,” Journal of Information

Processing Systems, vol. 18, no. 4, pp. 489-499, 2022. https://doi.org/10.3745/JIPS.03.0178

[7] C. Bohm and M. Hofer, Physical Unclonable Functions in Theory and Practice. New York, NY: Springer,

2013. https://doi.org/10.1007/978-1-4614-5040-5

[8] R. Maes, “PUF-based entity identification and authentication,” in Physically Unclonable Functions.

Heidelberg, Germany: Springer, 2013, pp. 117-141. https://doi.org/10.1007/978-3-642-41395-7_5

[9] A. Al-Meer and S. Al-Kuwari, “Physical unclonable functions (PUF) for IoT devices,” ACM Computing

Surveys, vol. 55, no. 14s, article no. 314, 2023. https://doi.org/10.1145/3591464

[10] M. Marcantoni, B. Jayawardhana, M. P. Chaher, and K. Bunte, “Secure formation control via edge computing

enabled by fully homomorphic encryption and mixed uniform-logarithmic quantization,” IEEE Control

Systems Letters, vol. 7, pp. 395-400, 2022. https://doi.org/10.1109/LCSYS.2022.3188944

[11] G. Xu, J. Zhang, and L. Wang, “An edge computing data privacy-preserving scheme based on blockchain

and homomorphic encryption,” in Proceedings of 2022 International Conference on Blockchain Technology

and Information Security (ICBCTIS), Huaihua City, China, 2022, pp. 156-159.

https://doi.org/10.1109/ICBCTIS55569.2022.00044

[12] V. Pal, B. S. Acharya, S. Shrivastav, S. Saha, A. Joglekar, and B. Amrutur, “PUF based secure framework for

hardware and software security of drones,” in Proceedings of 2020 Asian Hardware Oriented Security and

Trust Symposium (AsianHOST), Kolkata, India, 2020, pp. 1-6.

https://doi.org/10.1109/AsianHOST51057.2020.9358264

[13] J. Choi, B. Ahn, S. Pedavalli, S. Ahmad, A. Villasenor, and T. Kim, “Secure firmware update and device

authentication for smart inverters using blockchain and phyiscally uncloable function (PUF)-embedded

security module,” in Proceedings of 2021 6th IEEE Workshop on the Electronic Grid (eGRID), New Orleans,

LA, USA, 2021, pp. 1-4. https://doi.org/10.1109/eGRID52793.2021.9662155

[14] G. Vaidya, T. V. Prabhakar, and L. Manjunath, “GPIO PUF for IoT devices,” in Proceedings of 2020 IEEE

Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6.

https://doi.org/10.1109/GLOBECOM42002.2020.9322590

[15] Wikipedia, “SystemC,” 2024 [Online]. Available: https://en.wikipedia.org/wiki/SystemC.

[16] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription for Electronic System Level

Methodology. San Francisco, CA: Morgan Kaufmann Publishers, 2007.

[17] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V instruction set manual (Volume I: Base

user-level ISA),” Department of Electrical Engineering and Computer Sciences, University of California at

Berkeley, CA, USA, Technical Report No. UCB/EECS-2016-118, 2017.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf

[18] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic, “The RISC-V instruction set manual

(Volume II: Privileged architecture),” Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, CA, USA, Technical Report No. UCB/EECS-2016-116, 2017.

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf

[19] V. Van der Leest, E. Van der Sluis, G. J. Schrijen, P. Tuyls, and H. Handschuh, “Efficient implementation of

true random number generator based on SRAM PUFs,” in Cryptography and Security: From Theory to

Applications. Heidelberg, Germany: Springer, 2012, pp. 300-318. https://doi.org/10.1007/978-3-642-28368-

0_20

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 129

[20] Y. N. Imamverdiev and L. V. Sukhostat, “A method for cryptographic key generation from fingerprints,”

Automatic Control and Computer Sciences, vol. 46, pp. 66-75, 2012. https://doi.org/10.3103/S0146411612020022

[21] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura, “Cryptographie key generation from PUF data

using efficient fuzzy extractors,” in Proceedings of the 16th International Conference on Advanced

Communication Technology, Pyeongchang, South Korea, 2014, pp. 23-26.

https://doi.org/10.1109/ICACT.2014.6778915

[22] H. Kang, Y. Hori, and A. Satoh, “Performance evaluation of the first commercial PUF-embedded RFID,” in

Proceedings of the 1st IEEE Global Conference on Consumer Electronics, Tokyo, Japan, 2012, pp. 5-8.

https://doi.org/10.1109/GCCE.2012.6379926

[23] D. Ismari and J. Plusquellic, “IP-level implementation of a resistance-based physical unclonable function,”

in Proceedings of 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),

Arlington, VA, USA, 2014, pp. 64-69. https://doi.org/10.1109/HST.2014.6855570

[24] H. Akhundov, E. Van der Sluis, S. Hamdioui, and M. Taouil, “Public-key based authentication architecture

for IoT devices using PUF,” 2020 [Online]. Available: https://arxiv.org/abs/2002.01277.

[25] M. S. E. Quadir and J. A. Chandy, “Embedded systems authentication and encryption using strong PUF

modeling,” in Proceedings of 2020 IEEE International Conference on Consumer Electronics (ICCE), Las

Vegas, NV, USA, 2020, pp. 1-6. https://doi.org/10.1109/ICCE46568.2020.9043104

[26] A. A. Pour, V. Beroulle, B. Cambou, J. L. Danger, G. Di Natale, D. Hely, S. Guilley, and N. Karimi, “PUF

enrollment and life cycle management: solutions and perspectives for the test community,” in Proceedings

of 2020 IEEE European Test Symposium (ETS), Tallinn, Estonia, 2020, pp. 1-10.

https://doi.org/10.1109/ETS48528.2020.9131578

[27] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University, Stanford, CA,

USA, 2009.

[28] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the 41st Annual ACM

Symposium on Theory of Computing, Bethesda, MD, USA, 2009, pp. 169-178.

https://doi.org/10.1145/1536414.1536440

[29] F. Armknecht, C. Boyd, C. Carr, K. Gjosteen, A. Jaschke, C. A. Reuter, and M. Strand, “A guide to fully

homomorphic encryption,” 2015 [Online]. Available: https://eprint.iacr.org/2015/1192.

[30] O. Ozerk, C. Elgezen, A. C. Mert, E. Ozturk, and E. Savas, “Efficient number theoretic transform implemen-

tation on GPU for homomorphic encryption,” The Journal of Supercomputing, vol. 78, pp. 2840-2872, 2022.

https://doi.org/10.1007/s11227-021-03980-5

[31] V. Herdt, D. Grosse, H. M. Le, and R. Drechsler, “Extensible and configurable RISC-V based virtual

prototype,” in Proceedings of 2018 Forum on Specification & Design Languages (FDL), Garching, Germany,

2018, pp. 5-16. https://doi.org/10.1109/FDL.2018.8524047

[32] S. H. Lim, W. W. Suh, J. Y. Kim, and S. Y. Cho, “RISC-V virtual platform-based convolutional neural network

accelerator implemented in SystemC,” Electronics, vol. 10, no. 13, article no. 1514, 2014.

https://doi.org/10.3390/electronics10131514

[33] S. H. Lim, S. H. Kang, B. H. Ko, J. Roh, C. Lim, and S. Y. Cho, “An integrated analysis framework of

convolutional neural network for embedded edge devices,” Electronics, vol. 11, no. 7, article no. 1041, 2022.

https://doi.org/10.3390/electronics11071041

[34] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator,” ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3-

30, 1998. https://doi.org/10.1145/272991.272995

[35] R. Morelos-Zaragoza, “Encoder/decoder for binary BCH codes in C,” 1994 [Online]. Available: https://

www.eccpage.com/bch3.c.

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

130 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim https://orcid.org/0000-0003-3096-0785
He received B.S., M.S., and Ph.D. degrees in the Division of Electrical Engineering

from the Korea Advanced Institute of Science and Technology (KAIST) in 2001, 2003,

and 2008, respectively. He worked in the memory division of Samsung Electronics Co.

Ltd. from 2008 to 2010, where he engaged in developing a high-performance solid

state disk for server storage systems. Since 2010, he has been working as a professor

at the Division of Computer Engineering at Hankuk University of Foreign Studies. His

research interests include deep learning for embedded systems, interconnect network,

distributed system, flash memory and security system design.

Hyeok-Jin Lim https://orcid.org/0009-0009-8269-4416
He received B.S., M.S., and Ph.D. degrees in the Department of Information and

Communication Engineering, Sejong University in 2012, 2014, and 2018, respectively.

He worked in the Samsung Engineering Mega Solution (SEMES) Co. Ltd. from 2019

to 2021. Since 2021, he has been working as a senior at the Electronics and

Telecommunications Research Institute. His research interests include SoC design for

low-cost system and AI semiconductor system.

Seong-Cheon Park https://orcid.org/0000-0002-8716-6366
He received B.S. degrees from the Division of Electronics and Information

Engineering, Seoul National University of Science and Technology, Seoul, Korea, in

2002. The M.S. degree from the Division of Electronics and Computer Sciences, Korea

University, Seoul, Korea, in 2008. He completed a doctoral course in the field of

embedded security SoC at the Graduate School of Electronic Engineering, Hanyang

University, Seoul, Korea, in 2012. Currently he joined at Electronics and

Telecommunications Research Institute, where he has been working in the area of

hardware security circuit design. His research interests include hardware security

technology for smart ICT devices and ICs.

