T Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.01.0099 ISSN 2092-805X (Electronic)

kS

JOURNAL OF INFORMATION PROCESSING SYSTEMS J

SoC Virtual Platform with Secure Key Generation
Module for Embedded Secure Devices

Seung-Ho Lim'*, Hyeok-Jin Lim?, and Seong-Cheon Park?

Abstract

In the Internet-of-Things (IoT) or blockchain-based network systems, secure keys may be stored in individual
devices; thus, individual devices should protect data by performing secure operations on the data transmitted
and received over networks. Typically, secure functions, such as a physical unclonable function (PUF) and
fully homomorphic encryption (FHE), are useful for generating safe keys and distributing data in a network.
However, to provide these functions in embedded devices for IoT or blockchain systems, proper inspection is
required for designing and implementing embedded system-on-chip (SoC) modules through overhead and
performance analysis. In this paper, a virtual platform (SoC VP) was developed that includes a secure key
generation module with a PUF and FHE. The SoC VP platform was implemented using SystemC, which
enables the execution and verification of various aspects of the secure key generation module at the electronic
system level and analyzes the system-level execution time, memory footprint, and performance, such as
randomness and uniqueness. We experimentally verified the secure key generation module, and estimated the
execution of the PUF key and FHE encryption based on the unit time of each module.

Keywords
FHE, PUF, Secure Key Generation, SoC Virtual Platform

1. Introduction

The authentication and authority for data exchange have become important when transmitting data in
networks that general users use in daily life, such as Internet-of-Things (IoT) devices or blockchain
networks [1-3]. In the field of digital asset protection, such as non-fungible tokens (NFTs), as digital asset
transactions linked to the real world become more active, it is important to ensure the privacy and safe
use of sensitive information. As with the secure key of a general secure network system, a critical issue
in generating a secure key for digital asset protection is the randomness and uniqueness of the secure key
[4-6]. To guarantee this randomness and uniqueness, various research and development studies on secure
key generation methods have been conducted by applying encryption and decryption with various
features, such as a physical unclonable function (PUF) [7-9], fully homomorphic encryption (FHE)
[10,11], and error correcting codes (ECCs), on various levels of systems ranging from networks to
dedicated devices [12-14].

3 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received April 19, 2023; first revision September 22, 2023; second revision November 30, 2023; accepted November 30, 2023.

*Corresponding Author: Seung-Ho Lim (slim@hufs.ac.kr)

! Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, Korea (slim@hufs.ac.kr)

2Sudogwon Research Center, ETRI, Seongnam, Korea (hyeokjin.lim@etri.re kr, scpark@etri.re.kr)

www.Kips.or.kr Copyright© 2024 KIPS

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

In IoT- or blockchain-based network systems, secure keys are often stored on individual devices.
Individual devices should protect data by performing secure key generation operations on the data
transmitted and received over networks. In other words, the device should have a secure key generation
module. Hence, the development and verification of a secure key generation module at the chip level
within individual embedded devices has become important to ensure timely and proper secure key
generation. Specifically, in NFT systems, along with virtual digital assets, it is necessary to develop a
system-on-chip (SoC) that provides physical duplicability and guarantees uniqueness for real-world
assets using appropriate methods and performance guarantees. However, it is difficult to verify the
security and performance of the system by applying various secure key generation modules to hardware-
level SoCs and chips in a short period.

In this paper, a SoC virtual platform (SoC VP), which includes a secure key generation module, was
designed and implemented. The SoC VP flexibly applies various techniques of secure key generation and
analyzes performance, such as randomness and uniqueness, as well as system-level performance, such as
execution time and memory footprint. Our SoC virtual platform was implemented using SystemC [15],
which enables the execution and verification of various aspects of the secure key generation module at
the electronic system level (ESL) [16]. Specifically, the SoC virtual platform is configured based on a
RISC-V-embedded processor [17,18] and main memory, has a secure key generation module as a
controller, and is connected to the processor through a system bus. The secure key generation module
consists of internal modules, such as PUF, FHE, number theoretic transform (NTT), Bose—Chaudhuri—
Hocquenghem (BCH), pseudo-random number generator (PRNG), and secure hash algorithms (SHA) to
generate and encrypt/decrypt secure keys. The internal modules are connected through SystemC-based
interfaces and channels so that system-level modeling is performed through the interfaces between the
modules. This secure key generation module-based SoC virtual platform can be used as a preceding study

for SoC platforms that provide secure keys in embedded devices.

2. Background and Related Work

This section describes related work on security modules and algorithms related to PUF and FHE and
the background on the SoC VP with the secure key generation module for embedded devices.

2.1 PUF

Recently, in IoT or blockchain devices that perform network transmission of secure information such
as personal or financial information, PUF has been widely selected as a generation method for unique
identifiers in devices because it is regarded as a fingerprint for the device and the unique key cannot be
exposed to the outside [19-21]. In principle, PUF is a technology for generating secure keys that cannot
be physically duplicated owing to differences in the microstructures of semiconductor devices, even if
they are produced in the same manufacturing process. Various studies and developments have been
conducted to create PUFs using semiconductor devices as a medium, of which SRAM is a representative
device [19]. If the best extraction method is required for an embedded device, highly secure

authentication can be achieved when a PUF is used. Because there is a probability that errors will occur

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 117

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

whenever data are read from the original medium source, the PUF may consist of enrollment to generate
a secure key based on the original source and reproduction of the generated key. In [20], the authors
developed an encryption key generation method using fingerprints, and the authors [21] proposed a fuzzy
extractor for a PUF with a hashing function. Research on embedded devices or systems to which PUF is
applied is as follows. Kang et al. [22] used a PUF IC for RFID tags for frequency identification, and
Ismari and Plusquellic [23] developed PUF IP using resistance variances. Akhundov et al. [24] used an
SRAM PUF for public-key-based authentication for [oT systems and devices, and in [25], they developed
an authentication mechanism for embedded systems using PUF modeling. In [26], the authors reviewed
the industrial concerns regarding PUF operation.

There are several issues associated with the implementation of a PUF on a virtual platform. While the
original PUF obtains unique random values from real devices, we implemented PRNG to generate PUF
at the enrollment stage. In addition, an ECC such as BCH is required to model error generation during
the reading of PUF values and their corrections. We implemented these modules on a virtual platform for

PUF to generate a secure unique key.

2.2 Homomorphic Encryption and NTT

Important personal data, such as medical or financial information, should not only be transmitted as
encrypted from the device to the network, but should also be processed in an encrypted form that is not
decrypted to ensure data security. FHE can process data without decryption; therefore, it is useful as a
secure means of treating personal privacy data [27-29]. Homomorphic encryption enables personal
information protection because there is no decryption of personal information in IoT or blockchain
networks. However, homomorphic encryption requires high computational complexity, which limits its
use in embedded devices.

Homomorphic encryption of data, such as images or videos is time consuming; therefore, it is not
executable in embedded devices. However, encryption can be simple for text data such as financial
information or text messages. Additionally, many homomorphic encryption operations are based on
polynomial arithmetic methods. If we use fast polynomial arithmetic operations, such as polynomial
multiplication using the NTT [30], homomorphic encryption can be realized in embedded devices.
Therefore, we implemented NTT- and inverse NTT (INTT)-based homomorphic encryption functions in

the secure key generation module of the virtual platform.

2.3 SoC Virtual Platform and Module

The secure key generation module is designed for embedded devices for secure networks that require
personal information protection. The module is composed of PUF and homomorphic encryption
functions, which have recently attracted attention for generating secure keys and secure management of
encrypted data. In summary, the SoC VP presented in this study is based on an embedded processor, and
the secure key generation module is connected to the embedded processor as a controller through a system
bus. The secure key generation module consists of a PUF part for generating a secure key that guarantees
randomness and uniqueness and an FHE part that provides homomorphic encryption for the secure key
and data. We analyzed the performance and resource usage for secure operations of secure key generation
and encryption schemes on the implemented virtual platform.

118 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

3. SoC Virtual Platform for Secure Key Generation

3.1 Overall Architecture

The SoC VP was implemented using SystemC, which is capable of ESL modeling of embedded
devices. SystemC enables interoperation between modules through channel connections, thread
operations, and event processing. We designed and implemented a secure key generation module that
enables secure operation in embedded devices through SystemC-based modeling. For fast prototyping of
the secure key generation module of the SoC VP, we used the recently released RISC-V virtual platform
as an open-source [31] that has already been used as a reference virtual platform prototype for other
verifications [32,33]. Fig. 1 shows the overall architecture of a SoC VP. The SoC VP is based on an
RISC-V processor. The major modules in the overall structural diagram include the RISC-V processor
core, Main Memory, Flash Memory Controller, Interrupt Controller, and DMA Controller. Each module
was connected to the RISC-V processor core through the SystemC TLM (transaction-level modeling) 2.0

bus, and the processor core served as the master of each module.

)

RISC-V Executable
Software Applications Cross- RISC-V
Compiler ELF File
T
R W R O R O SR O R S SR O SR O O O SR O O S e O e e e . I- - -
.
Virtual Load to Memory
Platform CLINT e .
]
RV32IM Y
™ CPU Core
DMA Main
Controll M
Memory Interface ontrotier viemory
! f f
| TLM 2.0 Bus |
v
PLIC-based
— Interrupt pu Né?rgrzlllz:h Secure Key Gen
Controller

Fig. 1. Overall architecture of SoC virtual platform.

The additional module designed and implemented in this study is the secure key generation module, or
SecureKeyGen module. The SecureKeyGen module is also connected to the system bus, similar to the
other modules, and the processor core controls the module by accessing the memory-mapped register
allocated to the SecureKeyGen module through the TLM 2.0 bus.

The modules used for secure key and homomorphic encryption operations in the virtual platform are
the processor, main memory, flash memory, and SecureKeyGen modules. The application software for
verifying the SoC VP can be executed as an RISC-V-based user-level program created through RISC-V
cross-compilation. The application software performs two tasks: generating a secure PUF key and
homomorphic encrypted data. To achieve this, the application software transmits specific commands to
the virtual platform, waits until the task for the command is completed on the virtual platform, and

receives a completion signal via an interrupt signal. When an interrupt is received, the status register of

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 119

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

the virtual platform is read to determine whether the instructions have been completed.

In general, an embedded processor accesses the peripheral modules through the registers defined in the
memory map. For instance, the memory map addresses of the SecureKeyGen, main memory, and flash
memory modules, which are the main modules used in our virtual platform, are shown on the left side of
Fig. 2. Application software running on the virtual platform can access each module by directly accessing
each address area allocated to the memory map. The memory address sizes and the main contents of the
three modules are as follows: the start address and size of the flash memory were 0 x 71000000 and 4
kB, and the start and end addresses of the DRAM were 0 x 01000000 and 0 x 02000000, respectively.
The start and end addresses of SecureKeyGen are 0 x 50002000 and 0 x 50004000, respectively, and
SecureKeyGen has the following four registers within the address map—COMMAND (register for user
command), STATUS (status register of SecureKeyGen module), DATALEN (register that records the
size of data transmitted from the application), and DATA (register for exchanging data with the

application).
CLINT
nft Test SW RV32IM
CPU Core
M NAND
4 PUF_KEY l.xe:“gw Flash Controller
H Memory Interface|
Flash Memory FHE T T T
0x71000000 Encrypted TLM 2.0 Bus
; CONMMAND Secure Key Gen Module
RISC-V U NG STATUS
Core eyGen DATALEN
0x50002000
DATA c
]
:
< BCH
PUF_KEY 3
DRAM @
) FHE
0x01000000 Encrypted
(a) (b)

Fig. 2. (a) Memory map for SecureKeyGen, main memory, and flash memory modules, which are the
main modules used in the virtual platform and (b) structure of the secure key generation module.

3.2 Secure Key Generation Module

The detailed structure of SecureKeyGen module is shown on the right of Fig. 2. This module is
comprises SecureKeyGen, PUF, PRNG, FHE, NTT, and BCH modules. The SecureKeyGen module is
connected to the TLM system bus in the form of a socket and operates as an initiator-target type
connection with the RISC-V core. The internal modules are connected to each other by a SystemC in-out
channel, and each module is synchronized by event delivery, which is a SystemC function.

The SecureKeyGen module internally contains SecureKeyGen, PUF, FHE, and BCH modules as
submodules. The SecureKeyGen module in SecureKeyGen has a port directly connected to TLM 2.0
system bus plays a role in linking the RISC-V processor core and main memory through this port, and it
is directly connected to the PUF and FHE modules through channels. The internal SecureKeyGen module
has two SystemC threads: SKGThreadForPUF() and SKGThreadForFHE(). The first thread processes
events delivered from the PUF module and the second thread processes events delivered from the FHE

module.

120 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

The PUF module generates a secure PUF key by receiving commands from the SecureKeyGen module.
We modeled and implemented a fuzzy extractor-based PUF enrollment and reproduction method [8,19-
21]. For data generation, random number generation was applied based on a pseudo-random number
corresponding to the seed through the PRNG module. The PRNG module generates a pseudo-random
number by receiving the seed value from the PUF, in which the Mersenne twister random number
generation [34] algorithm was applied as the random number generation algorithm.

The FHE module receives commands from SecureKeyGen module and performs homomorphic
encryption. The NTT operation was applied to polynomial multiplication for homomorphic encryption.
The FHE module performs data encryption through BCH encoding using NTT. The NTT module inside
the FHE module performs NTT and convolution operations on the input data, and the results are sent
back to the FHE module, where the NTT(conv)NTT and INTT operations are performed. The BCH
module was implemented by referring to a binary BCH open-source based on the BCH error correction
code [35]. Currently supported BCH code lengths are as follows; (n, k, £) = (255,63,30), (127,64,10),
(255,115,21), (511,112,59), and so on, where » is 2”1, that is, size of the multiplicative group of GF(2"),
k is (n — deg(g(x))) which means dimension of the code (number of information bits/codeword), and ¢ is
error correcting capability (maximum number of errors the code corrects).

3.3 PUF Enrollment and Reproduction

The enrollment and reproduction sequences of the application software for verifying the secure PUF
key using the virtual platform are shown in Fig. 3. The operational process is as follows: when the
application software transmits the PUF_KEYGEN command to the virtual platform, the processor of the

-
application Software] 12. save PUF Key to Flash Memory
Buffer
\ i
1. Send Command (PYF_KEYGEN)
y 11. get PUF Key from Mem
w .9 Y
CLINT
10. send Interrupt
RV32IM
CPU Core
Interrupt Main NAND
Controller Memory Flash Controller
Memory Interface
2. cmd is fynasferred 9 conv PUE kav to Mam A
| s aeeriets - : TLM 2.0 Bus
Lrl NFT Secure Key Gen Module
7 TEq 5 oot 6. req BCH
e 3. SKG request| Random PUF _ g lenc for
S PA PUF from
oto PUFto : 4 PRNG
S PRNG v i
f BCH
£ PRNG
3 8. get PUF 7. get BCH
» Key lenc/dec of
PUF

Fig. 3. Enrollment and reproduction sequence of the application software with the SecureKeyGen module
on the virtual platform.

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 121

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

virtual platform transmits the command to the SecureKeyGen module. The module inside SecureKeyGen
sends a PUF creation request with an identification seed to the PUF module and notifies the user of the
event. The PUF module generates the PUF key. It requires the PRNG module to generate a PUF value
based on a pseudo-random number. The PRNG module returns seed-based PUF values.

In the enrollment phase, the PUF module requests BCH encoding from the BCH module and returns
the encoded data. These are the PUF enrollment data, called helper data, and are stored in flash memory
for future PUF reproduction. In the reproduction step, the PUF module generates a PUF key by
performing BCH decoding using the helper and PRNG PUF data. After the reproduction step, a secure
PUF key is generated. The SecureKeyGen module copies the generated PUF secure key to the main
memory. The SecureKeyGen module generates an interrupt and informs the application software of PUF

secure key generation.

3.4 Homomorphic Encryption with NTT

The homomorphic encryption sequence using the FHE and NTT modules is shown in Fig. 4. The
operation of the application software through the virtual platform is described as follows: first, the
application software copies the data for homomorphic encryption from the internal buffer to the main

(a = =
application] 15. save FHE Encypted to Flash Memory
software User
D Buffer
ata J
\ ; A
2. Send Command(FHE_Encr;épt) 14. get FHE Encrypted from Mem
v H
CLINT l
:1. Copy User Data to Mem
13. generate Interrupt
RV32IM
CPU Core
Interrupt Main NAND
Controller Memory Flash Controller
Memory Interface
3. cmd is trijasferred H
Seeen, TLM 2.0 Bus
l’-ﬂ TZ. copy FHE encrypted to Mem
L]:' NFT Secure Key Gen Module o req BCH
encoding
- G request 6.reqNTTee o get NTT | for NTT
> & convolution; & o
4 Usel data : to NTT i § E
is copied ¥° NTT BCH
from Mem to 5
SKGHuffer | 8 11 9etFHE 10. get BCH
» encrypted lencoding of]
NTT value
7. make
NTT value v

Fig. 4. Sequence of homomorphic encryption of data with the SecureKeyGen module on the virtual
platform.

Conv. [+ INTT |

122 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

memory and then sends the FHE Encrypt command to the virtual platform. The virtual platform
processor sends the corresponding command to the SecureKeyGen module. The SecureKeyGen module
copies the data in the main memory to the internal buffer of the module, sends a request for homomorphic
encryption to the FHE module, and notifies the event. The FHE module requests the NTT module to
perform homomorphic encryption of the received data, which is a polynomial multiplication using NTT
consisting of NTT(conv)NTT — INTT operations. The NTT module performs the corresponding
convolution and returns the results to the FHE module.

To evaluate and verify the double-encryption security, we added the process of calculating the BCH
encoding for the encrypted data. As shown in Fig. 4, the FHE module sends the encrypted data to the
BCH module to request BCH encoding, and the BCH module performs the BCH encoding and returns it
to the FHE module. The FHE module returns the BCH encryption data to the SecureKeyGen module,
which copies the data to the main memory. The SecureKeyGen module then generates an interrupt to
notify the application software of encryption completion. The application software copies the encrypted
data from the main memory to its own buffer and writes them to the flash memory.

4. Experiments and Verification

4.1 Applications and Verification

Based on the RISC-V virtual platform implemented in SystemC, we added secure key generation
modules such as PUF and FHE. The RISC-V virtual platform consists of a virtual platform that configures
the hardware system and an application software component that can be executed on the virtual platform.
Therefore, it is possible to verify and conduct experiments using a specific application software on the
virtual platform.

First, we performed functional verification using simple application software for the implemented
SecureKeyGen module. The verification software performs the following operations for the PUF and
FHE: for PUF, it transmits the PUF generation command through the memory-mapped register of the
SecureKeyGen and waits until it receives an interrupt signal, indicating that the PUF key has been
generated from the SecureKeyGen module. Then, it reads the generated PUF key from the corresponding
memory area and saves it in flash memory. The results of the functional verification of PUF key
generation and retrieval are shown in Fig. 5. As the figure shows, a 64-bit PUF key is typically generated
for a PUF set with BCH encoding (255, 63, 30). As the PUF key is a unique value generated using device-
specific information, its uniqueness and randomness must be guaranteed. The random number may not
be unique depending on the seed, because the PUF implemented in this study was generated with a PRNG
number generated using a random seed. To determine the uniqueness of PUF keys, we generated 50,000
keys and evaluated their uniqueness. Fig. 6 presents the results of the uniqueness experiment with 50,000
PUF keys. As shown in Fig. 6, the uniqueness maintains a value higher than 94% up to 50,000. However,
as the number of PUF keys increases, the uniqueness gradually decreases. This is considered a limitation
of the PRNG generator and the seed number integer value generation. It is expected that uniqueness can
be further improved if the randomness is further increased by shuffling and shifting using an additional

seed with a PRNG operation.

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 123

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

riscv32-unknown-elf-gcc main.c irq.c bootstrap -0 main -march=rv32i -mabi=11p32 -nostartfiles -Wl,--no-relax
nft-vp --intercept-syscalls --flash-device FlashMemory.dat main

SystemC 2.3.3-Accellera --- Jul 11 2822 23:26:45
Copyright (c) 1996-2018 by all Contributors,
ALL RIGHTS R RVED

Could get size of _file_ FlashMemory.dat: 1048576

*¥%% PUF & FHE KEY TEST SW *¥*%*

*** 1. GENERATE PUF KEY ***
This is a (255, 63, 30) binary BCH code
This is a (255, 63, 30) binary BCH code

**% read PUF KEY *#*

*** DONE GENERATE PUF KEY ***
--> PUF KEY = 0x702bc5374ba7ff1e
VE PUF KEY TO FLASH MEMORY ***

[TEST] Read PUF KEY from FLASH MEMORY ***
--> PUF KEY from FLASH = 0x702bc5374ba7ff10

Fig. 5. Results of functional verification for PUF key generation and retrieval.

100

90

80

70

60

50

40

Uniqueness rate(%)

30
20

10

0 10000 20000 30000 40000 50000
of PUF Key

Fig. 6. Results of randomness and uniqueness for PUF key generation and retrieval.

*%% 2. Encrypt Data with FHE **¥*
This is a (255, 63, 38) binary BCH code

*** Read FHE Encryped Data from SKG Module ***
FHE ENCRYPTION DONE ***
0x5050923e6d3838c4574ec5b63b7826e3b1782e3 535bc26db790000]
Oxal19e375e3d915168a52a3e96bc464dc543Ffa6 424b05bf3370000]
1770316d12bdc5eebea7b78581d5fc90149971588a23d7491910000]
@x1bf99a7bcdd5abe341d28d287c7de734b881a6363bc6dccd513f700000]
0x717ef835c4db451f11725dcb42b90321181af5e dé66cbfad4030000]
0x58a9f264b8cd7589973d3belcdf28258212a4cd98a93b5d6e90000]
0xa7b2cb47f2c495526afc3991b8aad4134c3bfbed41bob417ef1f456320000]
0x18acd67b997bccO8cfc7494cf2018c6157e2 49404793854870000]
4623Fdbbf29d573315397d7318497e42c51b87d2f7207d7d76200000]
x6c6bd546cc3d6d95d2081bfb4bd2cebcebate2062d3cbe74bac3e70000]
0xb89bcffb927fe820bb827e2176a8df8c45d138d519964d492378b510000]
0xf22243d3a5d2290d520¢c13fc993c6d28c753T83bfc1f0a613197950000]
0x697a88782cfo0fB9: afc50a340413f410d7focd79fBcaz3f70000]
Oxe4c344a91684e7d93c91ed4d13cec5f4ed4ceb8asodcffddf47dbs10000]
OxcOe3e84b5e92cf28481F2b9864 792b4678c8324f0a451795520000]
0xde7319das8fcd233d852af6ad484864cbd688012f01788d9eacd6050000]
0x1e7833287c99e28a3577b2b803b8abc31130a3b1d41eb95174c140000]
0x6d325d47eaadcb37761083c6bb2b2decle17e6ad73af4809771c40000]
oxf4fabbd1c2f437667c74dc23649bbf68e2fdocBeed77b3b1f15520000]
oxd7ae73doaf2e14be3352a08ebf4fc4073151ffe54714ad7abb8f870000]
0xbc8f627811d3365bf4b6a3a7a3f23dele37fd7e5e1a9251f871310000]
0xBafc2236276c9d9a18f1 9581b14378d159a61943571afc140000]
0x18cdf7634ddos 473d3eaB4e 4d7e2d12dd78b8d81ebc57d30000]
0x9235e9dc2cf22e8f63064f2a8c346ce616cfc8dfee79798d4320000]
0x6978F941e292ae2c5c53ba%9a9d39918fc24c99d4cd42b247475c740000]
0xa%c8fB8e88bc4c65c454c2c9b4256 4ab6c57922bff87f2e1a4670000]

Fig. 7. Results of functional verification for FHE encryption and retrieval of the FHE data.

124 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

Subsequently, FHE functional verification experiments were performed. To perform FHE encryption,
the application software first copies the text data to the memory area and sends the FHE encryption
command to the SecureKeyGen module. It waits until it receives an interrupt signal, indicating that the
FHE encryption has been completed by the SecureKeyGen module. If the interrupt arrives, it reads the
encrypted FHE data from the corresponding memory area and saves them to flash memory. The results
of the functional verification of the FHE encryption and the retrieval of the FHE data are shown in Fig.
7. As shown in Fig. 7, the FHE-encrypted data are created for the corresponding text data in code format.
It was decrypted in addition to its original text format.

4.2 Experiments on PUF Key Generation

We conducted experiments to estimate the key generation times of the PUF module in the RISC-V
virtual platform. The experiments executed the PUF key generation command in the software of the
RISC-V virtual platform, received the result, and stored it in flash memory. The estimated simulation
time was measured during this sequence. For proper estimation, time events provided by SystemC primitive
were appropriately applied to the major modules and intermodule interfaces according to the features of
the modules. The basic configuration values of the processor, memory, bus, and secure key generation
modules for the time events are listed in Table 1. Based on the unit time for each module configured in
the table, a PUF key generation simulation was performed, and the execution times were measured.

We measured and estimated how the PUF key generation time changed as the BCH encoding levels
changed. The experimental results of the estimated simulation time for the PUF key generation according
to the BCH encoding configuration level are shown in Fig. 8(a). In this study, we configured three BCH
levels: (127,64,10), (255,63,30), and (511,112,59). BCH encoding is important in PUF key generation,
because the BCH encoding level is a crucial configuration parameter that reflects the randomness and
error robustness of the PUF key. As shown in the results, the execution time increased as the BCH
encoding scheme became more complex. For the PUF key, BCH encoding provides the following
characteristics: the longer the BCH codeword length, the higher the randomness, the higher the error
correctability, and the higher the probability of guaranteeing uniqueness. However, the higher the
complexity of the BCH encoding scheme and the longer the codeword and PUF key lengths, the longer
the execution time related to the PUF key. In addition, we experimented with generating a PUF key while
changing the PUF key length for a specific BCH encoding. Fig. 8(b) shows the experimental results of
the estimated simulation time for the PUF key generation at BCH (255,63,30) as the key length varies
from 64 to 1024. By estimating the execution time for the three BCH encoding schemes, we can analyze
the correlation between the PUV key length and the PUF operation time and provide insight into
determining the appropriate PUF key length and BCH encoding scheme for designing a custom
embedded device.

Table 1. Basic configuration values of processor, memory, bus, and secure key generation modules for
the time events

Configuration parameter Unit time (ns)
CPU cycle time 10
CPU memory access 40
Bus data rate per byte 10
SKG execution cycle 20

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 125

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

Estimated Simulation Time for PUF Key Generation Estimated Simulation Time for PUF Key according to Key

1200 Length for BCH(255,63,30)

1000 4000
g —

3 w0 7 3500

E T 3000
= €

< 600 = 2500
o c

B 2 2000
S s

g 400 3 1500
g £

200 3 1000

1 n 1
0 0 |
(127,64,10) (255,63,30) (511,112,59) 64 128 256 512 1024
BCH Encoding Rate(N,K,T) PUF Key Length(bytes)
(a) (b)

Fig. 8. (a) Experimental results of estimated simulation time for PUF key generation according to the
BCH encoding configurations (127,64,10), (255,63,30), and (511,112,59), and (b) estimated simulation
time for PUF key length for BCH (255,63,30) encoding.

In summary, the experiment and verification process confirmed that the PUF and FHE modules
operated properly for the PUF generation and FHE encryption functions. The approximate execution
times for the PUF and FHE modules were estimated based on the configuration unit time of each module
on the virtual platform. Verification of the experiments was performed using the developed micro-level
software. It is suitable for functional inspection and operation verification of operations such as internal
PUF enrollment and regeneration, FHE NTT operations, and BCH modules. However, greater rationality

of the methodology may be required in terms of system-level verification or performance evaluation.

4.3 Discussion

We presented experimental results on the uniqueness and execution time of FHE and PUF on the RISC-
V virtual platform, as well as their functional verifications. As inferred from the experimental results, it
can be regarded as an acceptable level of performance verification when an embedded device operates in
a small-scale network environment. For verification at a more sophisticated system level, it is necessary
to perform encryption data transmission verification through FHE transmission and the reception of PUF
data in a network system. For a more sophisticated analysis of the virtual platform simulation of the
execution time, the execution of multiple instances and performance analysis are required. Additionally,
there may be a lack of scalability validation in large-scale networks. If in a large-scale network, to be
usable for modules on many devices, the probability of uniqueness should be higher, and a guaranteed
execution time should be provided. The generation of random seeds is important for increasing the
uniqueness. In our virtual platform, it is necessary to upgrade the seed generation algorithm in the PRNG,
and it may also be necessary to increase the key size to enhance randomness. Enhancing the PRNG
algorithm or increasing the key size also increases the complexity and execution time of the module,
which also affects the scalability. We confirmed that the execution time gradually increased with key
length in the previous experiment. To guarantee scalability of key generation time, it is necessary to
increase parallelism through the parallel operation of modules and the pipelined data flow of the data

path between modules.

126 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

5. Conclusion

As the data used in an [oT system or blockchain contain valuable personal information, personal device
authentication and data encryption are important for protecting personal information. A PUF is useful for
generating keys that guarantee device uniqueness, and homomorphic encryption is effective for safe data
distribution in networks. However, to include security functions, such as PUF and FHE, in embedded
devices for IoT or blockchain systems, proper inspection is required to design and implement embedded
SoC modules through overhead and performance analysis.

In this paper, an embedded process-based virtual platform was designed and implemented for security
key generation and homomorphic encryption of data. Our SoC VP, which simulates the RISC-V
embedded processor, was implemented using SystemC, which can run and verify the secure key
generation module at the ESL and analyze the system-level execution time, memory footprint, and
performance, such as randomness and uniqueness. We experimentally verified the secure key generation
module, and estimated the execution of the PUF key and FHE encryption based on the unit time of each
module. With the SoC virtual platform developed in this study, we further conducted research that utilizes
the PUF and FHE for various functions required for data security and operations in IoT or blockchain
systems. In future work, we will further secure methodological relationality by performing functional
verification and performance evaluation of FHE-encrypted transmission and reception of PUF data at a
large-scale networked system level.

Acknowledgement

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant
funded by the Korean government (No. 22ZT1100, ICT convergence technology support and
development based on local industry in the metropolitan area). This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2021R1F1A1048026). This work was supported by Hankuk University of Foreign Studies Research
Fund.

References

[1] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-based secure communication protocol for
10T,” ACM Transactions on Embedded Computing Systems, vol. 16, no. 3, article no. 67, 2017.
https://doi.org/10.1145/3005715

[2] Y.Zhang, B. Li, Y. Wang, J. Wu, and P. Yuan, “A blockchain-based user remote autentication scheme in [oT
systems using physical unclonable functions,” in Proceedings of 2020 IEEE 5th International Conference on
Signal and Image Processing (ICSIP), Nanjing, China, 2020, pp. 1100-1105.
https://doi.org/10.1109/ICS1P49896.2020.9339402

[3] Z. Li, Y. Chu, X. Liu, Y. Zhang, J. Feng, and X. Xiang, “Physical unclonable function based identity
management for loT with blockchain,” Procedia Computer Science, vol. 198, pp. 454-459, 2022.
https://doi.org/10.1016/j.procs.2021.12.269

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 127

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

[4] D. Kim, U. Jo, Y. Kim, Y. E. Eko, and H. Kim, “Design and implementation of a blockchain based
interworking of oneM2M and LWM2M loT systems,” Journal of Information Processing Systems, vol. 19,
no. 1, pp. 89-97, 2023. https://doi.org/10.3745/J1PS.01.0093

[5] Z. Siddiqui, J. Gao, and M. K. Khan, “An improved lightweight PUF-PKI digital certificate authentication
scheme for the Internet of Things,” IEEE Internet of Things Journal, vol. 9, no. 20, pp. 19744-19756, 2022.
https://doi.org/10.1109/J10T.2022.3168726

[6] H. H. Kim and J. Yoo, “Analysis of security vulnerabilities for loT devices,” Journal of Information
Processing Systems, vol. 18, no. 4, pp. 489-499, 2022. https://doi.org/10.3745/J1PS.03.0178

[7]1 C.Bohm and M. Hofer, Physical Unclonable Functions in Theory and Practice. New York, NY: Springer,
2013. https://doi.org/10.1007/978-1-4614-5040-5

[8] R. Maes, “PUF-based entity identification and authentication,” in Physically Unclonable Functions.
Heidelberg, Germany: Springer, 2013, pp. 117-141. https://doi.org/10.1007/978-3-642-41395-7 5

[9] A. Al-Meer and S. Al-Kuwari, “Physical unclonable functions (PUF) for loT devices,” ACM Computing
Surveys, vol. 55, no. 14s, article no. 314, 2023. https://doi.org/10.1145/3591464

[10] M. Marcantoni, B. Jayawardhana, M. P. Chaher, and K. Bunte, “Secure formation control via edge computing
enabled by fully homomorphic encryption and mixed uniform-logarithmic quantization,” IEEE Control
Systems Letters, vol. 7, pp. 395-400, 2022. https://doi.org/10.1109/LCSYS.2022.3188944

[11] G. Xu, J. Zhang, and L. Wang, “An edge computing data privacy-preserving scheme based on blockchain
and homomorphic encryption,” in Proceedings of 2022 International Conference on Blockchain Technology
and Information Security (ICBCTIS), Huaihua City, China, 2022, pp. 156-159.
https://doi.org/10.1109/ICBCTIS55569.2022.00044

[12] V. Pal, B. S. Acharya, S. Shrivastav, S. Saha, A. Joglekar, and B. Amrutur, “PUF based secure framework for
hardware and software security of drones,” in Proceedings of 2020 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), Kolkata, India, 2020, pp. 1-6.
https://doi.org/10.1109/AsianHOST51057.2020.9358264

[13] J. Choi, B. Ahn, S. Pedavalli, S. Ahmad, A. Villasenor, and T. Kim, “Secure firmware update and device
authentication for smart inverters using blockchain and phyiscally uncloable function (PUF)-embedded
security module,” in Proceedings of 2021 6th IEEE Workshop on the Electronic Grid (eGRID), New Orleans,
LA, USA, 2021, pp. 1-4. https://doi.org/10.1109/eGRID52793.2021.9662155

[14] G. Vaidya, T. V. Prabhakar, and L. Manjunath, “GPIO PUF for loT devices,” in Proceedings of 2020 IEEE
Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-6.
https://doi.org/10.1109/GLOBECOM42002.2020.9322590

[15] Wikipedia, “SystemC,” 2024 [Online]. Available: https://en.wikipedia.org/wiki/SystemC.

[16] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A Prescription for Electronic System Level
Methodology. San Francisco, CA: Morgan Kaufmann Publishers, 2007.

[17] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V instruction set manual (Volume I: Base
user-level ISA),” Department of Electrical Engineering and Computer Sciences, University of California at
Berkeley, CA, USA, Technical Report No. UCB/EECS-2016-118, 2017.
https://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf

[18] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic, “The RISC-V instruction set manual
(Volume II: Privileged architecture),” Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, CA, USA, Technical Report No. UCB/EECS-2016-116,2017.
https://www?2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf

[19] V. Van der Leest, E. Van der Sluis, G. J. Schrijen, P. Tuyls, and H. Handschuh, “Efficient implementation of
true random number generator based on SRAM PUFs,” in Cryptography and Security: From Theory to
Applications. Heidelberg, Germany: Springer, 2012, pp. 300-318. https://doi.org/10.1007/978-3-642-28368-
020

128 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

Seung-Ho Lim, Hyeok-Jin Lim, and Seong-Cheon Park

[20] Y. N. Imamverdiev and L. V. Sukhostat, “A method for cryptographic key generation from fingerprints,”
Automatic Control and Computer Sciences, vol. 46, pp. 66-75, 2012. https://doi.org/10.3103/S0146411612020022

[21] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura, “Cryptographie key generation from PUF data
using efficient fuzzy extractors,” in Proceedings of the 16th International Conference on Advanced
Communication Technology, Pyeongchang, South Korea, 2014, pp. 23-26.
https://doi.org/10.1109/ICACT.2014.6778915

[22] H. Kang, Y. Hori, and A. Satoh, “Performance evaluation of the first commercial PUF-embedded RFID,” in
Proceedings of the Ist IEEE Global Conference on Consumer Electronics, Tokyo, Japan, 2012, pp. 5-8.
https://doi.org/10.1109/GCCE.2012.6379926

[23] D. Ismari and J. Plusquellic, “IP-level implementation of a resistance-based physical unclonable function,”
in Proceedings of 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST),
Arlington, VA, USA, 2014, pp. 64-69. https://doi.org/10.1109/HST.2014.6855570

[24] H. Akhundov, E. Van der Sluis, S. Hamdioui, and M. Taouil, “Public-key based authentication architecture
for [oT devices using PUF,” 2020 [Online]. Available: https://arxiv.org/abs/2002.01277.

[25] M. S. E. Quadir and J. A. Chandy, “Embedded systems authentication and encryption using strong PUF
modeling,” in Proceedings of 2020 IEEE International Conference on Consumer Electronics (ICCE), Las
Vegas, NV, USA, 2020, pp. 1-6. https://doi.org/10.1109/ICCE46568.2020.9043104

[26] A. A. Pour, V. Beroulle, B. Cambou, J. L. Danger, G. Di Natale, D. Hely, S. Guilley, and N. Karimi, “PUF
enrollment and life cycle management: solutions and perspectives for the test community,” in Proceedings
0f 2020 IEEE European Test Symposium (ETS), Tallinn, Estonia, 2020, pp. 1-10.
https://doi.org/10.1109/ETS48528.2020.9131578

[27] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University, Stanford, CA,
USA, 2009.

[28] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, Bethesda, MD, USA, 2009, pp. 169-178.
https://doi.org/10.1145/1536414.1536440

[29] F. Armknecht, C. Boyd, C. Carr, K. Gjosteen, A. Jaschke, C. A. Reuter, and M. Strand, “A guide to fully
homomorphic encryption,” 2015 [Online]. Available: https://eprint.iacr.org/2015/1192.

[30] O. Ozerk, C. Elgezen, A. C. Mert, E. Ozturk, and E. Savas, “Efficient number theoretic transform implemen-
tation on GPU for homomorphic encryption,” The Journal of Supercomputing, vol. 78, pp. 2840-2872, 2022.
https://doi.org/10.1007/s11227-021-03980-5

[31] V. Herdt, D. Grosse, H. M. Le, and R. Drechsler, “Extensible and configurable RISC-V based virtual
prototype,” in Proceedings of 2018 Forum on Specification & Design Languages (FDL), Garching, Germany,
2018, pp. 5-16. https://doi.org/10.1109/FDL.2018.8524047

[32] S. H. Lim, W. W. Suh, J. Y. Kim, and S. Y. Cho, “RISC-V virtual platform-based convolutional neural network
accelerator implemented in SystemC,” Electronics, vol. 10, no. 13, article no. 1514, 2014.
https://doi.org/10.3390/electronics 10131514

[33] S. H. Lim, S. H. Kang, B. H. Ko, J. Roh, C. Lim, and S. Y. Cho, “An integrated analysis framework of
convolutional neural network for embedded edge devices,” Electronics, vol. 11, no. 7, article no. 1041, 2022.
https://doi.org/10.3390/electronics 11071041

[34] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-
random number generator,” ACM Transactions on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3-
30, 1998. https://doi.org/10.1145/272991.272995

[35] R. Morelos-Zaragoza, “Encoder/decoder for binary BCH codes in C,” 1994 [Online]. Available: https://

www.eccpage.com/bch3.c.

J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024 | 129

SoC Virtual Platform with Secure Key Generation Module for Embedded Secure Devices

Seung-Ho Lim https://orcid.org/0000-0003-3096-0785

He received B.S., M.S., and Ph.D. degrees in the Division of Electrical Engineering
from the Korea Advanced Institute of Science and Technology (KAIST) in 2001, 2003,
and 2008, respectively. He worked in the memory division of Samsung Electronics Co.
Ltd. from 2008 to 2010, where he engaged in developing a high-performance solid
state disk for server storage systems. Since 2010, he has been working as a professor
at the Division of Computer Engineering at Hankuk University of Foreign Studies. His
research interests include deep learning for embedded systems, interconnect network,
distributed system, flash memory and security system design.

Hyeok-Jin Lim https:/orcid.org/0009-0009-8269-4416

He received B.S., M.S., and Ph.D. degrees in the Department of Information and
Communication Engineering, Sejong University in 2012,2014, and 2018, respectively.
He worked in the Samsung Engineering Mega Solution (SEMES) Co. Ltd. from 2019
to 2021. Since 2021, he has been working as a senior at the Electronics and
Telecommunications Research Institute. His research interests include SoC design for
low-cost system and Al semiconductor system.

Seong-Cheon Park https:/orcid.org/0000-0002-8716-6366

He received B.S. degrees from the Division of Electronics and Information
Engineering, Seoul National University of Science and Technology, Seoul, Korea, in
2002. The M.S. degree from the Division of Electronics and Computer Sciences, Korea
University, Seoul, Korea, in 2008. He completed a doctoral course in the field of
embedded security SoC at the Graduate School of Electronic Engineering, Hanyang
University, Seoul, Korea, in 2012. Currently he joined at Electronics and
Telecommunications Research Institute, where he has been working in the area of
hardware security circuit design. His research interests include hardware security
technology for smart ICT devices and ICs.

130 | J Inf Process Syst, Vol.20, No.1, pp.116~130, February 2024

