Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.
As cloud computing has become a widespread technology, malicious attackers can obtain the private information of users that has leaked from the service provider in the outsourced databases. To resolve the problem, it is necessary to encrypt the database prior to outsourcing it to the service provider. However, the most existing data encryption schemes cannot process a query without decrypting the encrypted databases. Moreover, because the amount of the data is large, it takes too much time to decrypt all the data. For this, Programmable Order-Preserving Secure Index Scheme (POPIS) was proposed to hide the original data while performing query processing without decryption. However, POPIS is weak to both order matching attacks and data count attacks. To overcome the limitations, we propose a group order-preserving data encryption scheme (GOPES) that can support efficient query processing over the encrypted data. Since GOPES can preserve the order of each data group by generating the signatures of the encrypted data, it can provide a high degree of data privacy protection. Finally, it is shown that GOPES is better than the existing POPIS, with respect to both order matching attacks and data count attacks.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권10호
/
pp.5153-5170
/
2016
The benefit of the scalability and flexibility inherent in cloud computing motivates clients to upload data and computation to public cloud servers. Because data is placed on public clouds, which are very likely to reside outside of the trusted domain of clients, this strategy introduces concerns regarding the security of sensitive client data. Thus, to provide sufficient security for the data stored in the cloud, it is essential to encrypt sensitive data before the data are uploaded onto cloud servers. Although data encryption is considered the most effective solution for protecting sensitive data from unauthorized users, it imposes a significant amount of overhead during the query processing phase, due to the limitations of directly executing operations against encrypted data. Recently, substantial research work that addresses the execution of SQL queries against encrypted data has been conducted. However, there has been little research on top-k join query processing over encrypted data within the cloud computing environments. In this paper, we develop an efficient algorithm that processes a top-k join query against encrypted cloud data. The proposed top-k join processing algorithm is, at an early phase, able to prune unpromising data sets which are guaranteed not to produce top-k highest scores. The experiment results show that the proposed approach provides significant performance gains over the naive solution.
데이터베이스 아웃소싱 환경에서, 클라우드는 인증된 사용자에게 아웃소싱된 데이터베이스를 기반으로 질의 서비스를 제공한다. 그러나 금융, 의료 정보와 같은 민감한 데이터는 클라우드에 아웃소싱 되기 전에 암호화되어야 한다. 한편, kNN 질의는 다양한 분야에서 폭넓게 사용되는 대표적인 질의 타입이며, kNN 질의 결과는 사용자의 관심사 및 선호도와 밀접하게 연관된다. 따라서 데이터 보호와 질의 보호를 동시에 고려하는 kNN 질의 처리 알고리즘에 대한 연구가 진행되어 왔다. 그러나 기존 연구는 높은 연산 비용이 요구되거나, 탐색한 인덱스의 노드 및 반환된 질의 결과가 드러나기 때문에 데이터 접근 패턴이 노출되는 문제점이 존재한다. 이러한 문제를 해결하기 위해 본 논문에서는 암호화 데이터베이스 상에서의 kNN 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 데이터 보호 및 질의 보호를 지원한다. 또한, 제안하는 알고리즘은 데이터 접근 패턴을 보호하는 동시에 효율적인 질의처리를 지원한다. 이를 위해, 데이터 접근 패턴 노출 없이 데이터 필터링을 지원하는 암호화 인덱스 탐색 기법을 제안한다. 성능 분석을 통해, 제안하는 알고리즘이 기존 기법에 비해 질의처리 시간 측면에서 우수한 성능을 보임을 검증한다.
인터넷에서 XML 데이타를 그대로 배포할 경우 모든 사용자가 배포된 XML 데이타를 아무 제약 없이 액세스할 수 있어, XML 데이타 제공자의 프라이버시가 보장되지 않는다. 따라서, 배포된 XML 데이타에 대해서 액세스를 통제할 수 있도록 암호화 기법을 사용하는 방법들이 최근에 제안되었다. 그러나, 이들 방법에서는 배포된 XML 데이타에 대한 질의 처리 성능이 충분히 논의되지 않았다 질의 처리기는 암호화된 XML 데이타를 복호화하기 전까지 XML 데이타의 실제 내용을 알 수 없으며, 이로 인해 질의 결과를 포함하지 않은 부분까지도 복호화해야 하는 오버헤드가 발생한다. 본 논문에서는 암호화된 XML 데이타에 대한 효율적인 질의 처리를 위해 질의-인식 복호화(Query-aware decryption)라는 개념을 제안한다. 질의-인식 복호화란 암호화된 XML 데이타 중에서 질의 결과를 포함하는 부분만 복호화하는 방법이다. 이를 위해 XML 인덱스를 암호화하여 데이타와 함께 배포한다. 암호화된 XML 인덱스만을 복호화함으로써 암호화된 XML 데이타에서 질의 결과가 포함되어 있는 위치를 알아내어, 다른 암호화된 XML 데이타의 불필요한 복호화를 방지할 수 있다. 암호화된 XML 인덱스는 암호화된 XML 데이타에 비해 그 크기가 매우 작으므로 이를 복호화하는 비용은 암호화된 XML 데이타를 불필요하게 복호화하는데 낭비된 비용에 비해 매우 작다. 실험 결과는 질의-인식 복호화를 사용하는 질의 처리 방법이 기존의 방법에 비해 질의 처리 성능을 최대 6배까지 향상시킴을 보인다. 마지막으로, 암호화된 XML 인덱스로 인해 추가적인 보안 누출이 발생하지 않음을 정형적으로 증명한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권7호
/
pp.3375-3400
/
2018
With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.
최근 다양한 분야에서 생산되는 데이터의 양이 폭발적으로 증가함에 따라 사용자가 가장 관심 있어 하는 몇 개의 데이터를 검색하는 top-k 질의에 대한 관심이 고조되고 있다. Top-k 질의는 사용자의 점수 함수를 이용하여, 사용자가 원하는 모든 조건을 만족시키는 데이터들 중에서 최상위 (또는 최하위) 점수를 가지는 k개의 데이터를 사용자에게 반환한다. 최근 들어 클라우드 컴퓨팅 서비스의 대중화로 인하여 사용자의 대용량 데이터를 클라우드에 아웃소싱하여 경제적으로 저장 및 관리하는 데이터 아웃소싱이 크게 주목받고 있다. 그러나 데이터 아웃소싱으로 인하여 사용자의 민감한 데이터가 클라우드 서비스 제공자에게 노출될 수 있다는 위험이 존재하며, 이러한 문제를 방지하기 위해서는 사용자의 민감한 데이터를 암호화하여 클라우드에 저장하는 것이 필수적으로 요구된다. 본 논문은 클라우드 컴퓨팅 환경에서 암호화된 데이터에 대한 top-k 질의를 효율적으로 처리하는 알고리즘을 제안한다. 제안되는 알고리즘은 순서보존 암호화 기법을 이용하여, 암호화된 데이터만을 대상으로 top-k 질의 결과에 포함되지 않을 것으로 예상되는 중간 결과들을 클라우드 내에서 미리 제거함으로써 효율적인 top-k 질의 처리가 가능하게 한다. 논문의 실험 결과는 제안된 top-k 질의 처리 알고리즘이 단순 방법과 비교하여 사용자 시스템의 부하를 10배~10000배 줄일 수 있음을 증명한다.
최근 클라우드 컴퓨팅의 발전에 따라, 데이터베이스 아웃소싱(Outsourcing)에 대한 연구가 활발히 진행되고 있다. 또한 무선 통신 기술 및 모바일 기기의 발전으로 인해 위치 기반 서비스를 이용하는 사용자의 수가 증가하였다. 따라서 개인 또는 소규모의 사업자는 데이터 저장 및 관리 비용을 줄이기 위해 그들의 공간 데이터를 위치 기반 서비스 제공자에게 아웃소싱 한다. 그러나 사용자의 위치 정보는 시간대별 방문 장소 및 개인 정보를 지니고 있기 때문에, 이에 대한 허용되지 않은 접근 시 개인 정보 유출 문제가 발생한다. 따라서 위치 정보 아웃소싱을 위한 개인 정보 보호 연구가 필요하다. 이러한 문제를 해결하기 위해, 본 논문에서는 아웃소싱 환경에서 도로네트워크를 고려한 암호화된 공간 데이터베이스 기반 k-최근접점 질의 처리 알고리즘을 제안하였다. 제안하는 기법은 데이터베이스 아웃소싱을 위해 위치 데이터를 네트워크 거리 정보로 변환 및 암호화한 가공데이터를 생성하여 이를 서비스 제공자에게 전송한다. 또한, 전처리 과정을 통해 네트워크 노드와 POI 거리를 미리 저장하여 네트워크 탐색을 빠르게 수행하며, 질의 수행 시 최근접 대표 POI 및 암호화된 거리 정보를 이용하여 질의 결과 후보 집합을 탐색한다. 마지막으로, 질의 영역 재설정 과정을 통해 불필요한 후보 탐색을 줄임으로써 효율적으로 POI를 탐색한다. 마지막으로, 성능평가를 통해 제안하는 기법이 기존 방법에 비해 우수함을 보인다.
With growing popularity of cloud computing services, users can more easily manage massive amount of data by outsourcing them to the cloud, or more efficiently analyse large amount of data by leveraging IT infrastructure provided by the cloud. This, however, brings the security concerns of sensitive data. To provide data security, it is essential to encrypt sensitive data before uploading it to cloud computing services. Although data encryption helps provide data security, it negatively affects the performance of massive data analytics because it forbids the use of index and mathematical operation on encrypted data. Thus, in this paper, we propose a novel algorithm which enables to efficiently process a large amount of encrypted data. In particular, we propose a novel top-k processing algorithm on the massive amount of encrypted data in the cloud computing environments, and verify the performance of the proposed approach with real data experiments.
Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.