• Title/Summary/Keyword: Enclosure Resonance

Search Result 14, Processing Time 0.099 seconds

Analysis of Resonant Characteristics for a Metallic Shielding Enclosure with a PCB Source (PCB 파원이 내장된 금속 함체의 공진 특성 해석)

  • Cho, Byung-Doo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.507-514
    • /
    • 2012
  • This paper proposed the analysis method of the cavity resonance characteristics for a metallic enclosure with a PCB trace source. In order to calculation the electromagnetic fields inside the cavity, coupled integral equations for a current distribution on the PCB trace and an aperture electric field distribution on the boundary of the PCB dielectric are derived and solved by applying Galerkin's method of moments. The result show that the resonant characteristics of the metallic enclosure are fairly good agreement with the simulation(HFSS) and the measured results. The resonant frequencies of the metallic enclosure with the PCB trace are changed by the PCB trace location inside of the cavity. In order to check the validity of the theoretical analysis, the calculated return losses are compared with the measured results.

Analysis for Shielding Effectiveness of an Enclosure with a Dielectric-B acted Rectangular Aperture (유전체로 막힌 사각 개구를 갖는 함체의 차폐 효과 해석)

  • Kim, Su-Han;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • A new analytical method is presented for the shielding effectiveness(SE) of an enclosure with a dielectric-backed aperture. The previously proposed methods cannot consider the effect of the dielectric on the aperture. The comparisons among our method, previous method, and commercial programs give good correspondence. The method is used to calculate SE with varying permittivity and thickness of dielectric sheet, probe position, width and height of aperture.

Experimental Study on the Thermal Performance of Piezoelectric Fan in an Enclosure (밀폐공간 내에서 압전세라믹 냉각홴의 열성능에 대한 실험적 연구)

  • Park, Sang-Hee;Choi, Moon-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1173-1180
    • /
    • 2006
  • This study deals with fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) fan in an enclosure. The fluid flows were generated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in an enclosure($270\times260\times90mm^3$). Input voltages of 30V and 40V, and a resonance frequency of 28Hz were used to vibrate the cooling fan. Input power to the module was 4W. The height in an enclosure was changed 23$\sim$43mm. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film. As the height in an enclosure and the input voltage of PZT fan increased, the cooling effect of module using a PZT fan increased. We found that the flow type was T- or Y-shape and the cooling effect was increased by the wake generated by a PZT fan.

Shielding Effectiveness of Metallic Enclosure with a Rectangular Slit Aperture (직사각형 슬릿 개구를 갖는 금속 함체의 차폐 효과에 대한 연구)

  • Lee, Soong-Keun;Seong, Cheol-Min;Kim, Eun-Ha;Ryu, Seung-Real;Lee, Jae-Hyun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.652-659
    • /
    • 2012
  • Shielding effectiveness(SE) of metallic rectangular enclosure with rectangular slit apertures at horizontal polarization (HP) and vertical polarization(VP) is investigated. The magnetic polarizability of the rectangular slit apertures and the resonance modes of the metallic rectangular enclosure are analyzed theoretically. The simulation results based on these theoretical analyses are compared with the measured ones. The dependence of the shielding effectiveness on the location of the calculation probe inside the enclosure is also investigated.

Resonance Characteristics of a Metallic Enclosure Having Sub-Cavity with Lossy Dielectric Materials (부공동에 손실 유전체를 충진한 함체 케이스의 공진 특성)

  • Lim, Sung-Min;Jung, Sung-Woo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.936-942
    • /
    • 2009
  • This paper presents the delivered power and reflection coefficient in metallic shielding enclosure with a sub-cavity, which are evaluated with the method of moments, sad describes a method for controlling the resonance characteristics of the metallic cavity by putting lossy dielectric material in the sub-cavity. In this paper we introduce carbon polystyrene-foam as lossy dielectric material and observe it's effects of reduction when the dimensions of the sub-cavity and permittivity of lossy dielectric material are changed. The results show that the reduction of the electromagnetic radiation can be achieved by controlling the amount of carbon in lossy dielectric material and the dimensions of the sub-cavity. The theoretical analysis is verified by the measured delivered power.

An Experimental Study on Resonance of Temperature Field by Low-Frequency Oscillating Wall in a Side Heated Enclosure (저 주파수 벽면 가진에 의한 밀폐공간 내부 온도장의 공진 특성 실험)

  • Kim, Seo-Yeong;Kim, Seong-Gi;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1272-1280
    • /
    • 2001
  • An experimental study has been conducted to elucidate the resonance of natural convection in a side-heated square enclosure having a mechanically oscillating bottom wall. Under consideration is the impact of the imposed oscillating frequency, amplitude and the system Rayleigh number on the fluctuation of air temperatures. The experimental results show that the magnitude of the fluctuation of air temperature is substantially augmented at a specific forcing frequency of the oscillating bottom wall. The resonant frequency is increased with the increase of the Rayleigh number and it is little affected by the amplitude of the oscillating wall. It is also found that the resonant frequency is relevant to the Brunt- V$\"{a}$iS$\"{a}$l$\"{a}$ frequency which represents the stratification degree of the system.

Resonance Frequency of the Natural Convection in the Closure Cavity for the Variable Aspect Ratio (종횡비가 변하는 공동 내 자연대류의 공진주파수)

  • Chun, Kun-Ho;Joo, Kwang-Sup;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.609-614
    • /
    • 2000
  • This numerical study investigate resonance frequency of natural convection for steady state, periodic flow and chaotic flow in two-dimensional direct numerical simulations, differentially heated, vertical cavities having aspect ratios near unity. The enclosure cavity has isothermal and time dependent temperature side walls and adiabatic top/bottom walls. The aspect ratio is 1/3, 1/2, 1, 2, and 3 for the varying Rayleigh number. Resonance frequency for AR=1 has decrease as the aspect ratio and the Rayleigh number are increasing.

  • PDF

Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity

  • Omer, Ahmed;Mohany, Atef;Hassan, Marwan
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.91-107
    • /
    • 2016
  • Flow-excited acoustic resonance in ducted cavities can produce high levels of acoustic pressure that may lead to severe damage. This occurs when the flow instability over the cavity mouth, which is created by the free shear layer separation at the upstream edge, is coupled with one of the acoustic modes in the accommodating enclosure. Acoustic resonance can cause high amplitude fluctuating acoustic loads in and near the cavity. Such acoustic loads could cause damage in sensitive applications such as aircraft weapon bays. Therefore, the suppression and mitigation of these resonances are very important. Much of the work done in the past focused on the fluid-dynamic oscillation mechanism or suppressing the resonance by altering the edge condition at the shear layer separation. However, the effect of the downstream edge has received much less attention. This paper considers the effect of the impingement edge geometry on the acoustic resonance excitation and Strouhal number values of the flow instabilities in a ducted shallow cavity with an aspect ratio of 1.0. Several edges, including chamfered edges with different angles and round edges with different radii, were investigated. In addition, some downstream edges that have never been studied before, such as saw-tooth edges, spanwise cylinders, higher and lower steps, and straight and delta spoilers, are investigated. The experiments are conducted in an open-loop wind tunnel that can generate flows with a Mach number up to 0.45. The study shows that when some edge geometries, such as lower steps, chamfered, round, and saw-tooth edges, are installed downstream, they demonstrate a promising reduction in the acoustic resonance. On the other hand, higher steps and straight spoilers resulted in intensifying the acoustic resonance. In addition, the effect of edge geometry on the Strouhal number is presented.

Natural Convection in an Enclosure under Time Dependent Gravity (가변 중력장하의 밀폐 용기 내 자연 대류)

  • Kim, Ki-Hyun;Hyun, Jae-Min;Kwak, Ho-Sang
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.556-561
    • /
    • 2000
  • Comprehensive numerical computations are made of side-heated squire cavity which is exposed to time dependent external mechanical forcing. Numerical solutions are acquires to the governing two-dimensional Navier-Stokes equations for a Boussinesq fluid. Time dependent heat transfer characteristics of interior fluid are analyzed to illustrate resonance phenomenon. When system is exposed to pure sinusoidal mechanical forcing, the numerical results disclose that the basic mechanism of resonance of mechanical forcing is same as that of thermal forcing of Ref. [3, 9]. In comparatively small amplitude of mechanical forcing, thermal characteristics of the system are similar to basic system(${\varepsilon}=0$).

  • PDF