• 제목/요약/키워드: Encapsulation plant

검색결과 39건 처리시간 0.018초

Evaluation of Bacillus velezensis for Biological Control of Rhizoctonia solani in Bean by Alginate/Gelatin Encapsulation Supplemented with Nanoparticles

  • Moradi-Pour, Mojde;Saberi-Riseh, Roohallah;Esmaeilzadeh-Salestani, Keyvan;Mohammadinejad, Reza;Loit, Evelin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1373-1382
    • /
    • 2021
  • Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.

경수로 사용후핵연료 재포장 개념(안) 수립 (Conceptual Design for Repackaging of PWR Spent Nuclear Fuel)

  • 이상환;신창민;강현구;조천형;정해룡
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.519-532
    • /
    • 2023
  • Spent nuclear fuel(SNF) is stored in nuclear power plants for a certain period of time and then transported to an interim storage facility. After that, SNF is finally repackaged in a disposal canister at an encapsulation plant for final disposal. Finland and Sweden, leading countries in SNF disposal technology, have already completed designing of spent fuel encapsulation plant. In particular, the encapsulation plant construction in Finland is near completion. When it comes to South Korea, as the amount of SNF production and disposal plan is different from those in Finland and Sweden, it is difficult to apply the concepts of these contries as is. Therefore, it is necessary to establish the spent fuel repackaging concept and to derive each operating and repackaging procedures by considering annual disposal plan of South Korea. The results of this study is expected to be used to establish the concept of optimized encapsulation plant through further research.

Cryopreservation of Hevea brasiliensis zygotic embryos by vitrification and encapsulation-dehydration

  • Nakkanong, Korakot;Nualsri, Charassri
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.333-339
    • /
    • 2018
  • The mature zygotic embryos of the Hevea brasiliensis were cryopreserved through the use of the vitrification and encapsulation/dehydration techniques. In all the experiments, the zygotic embryos were pre-cultured for three days in the MS medium supplemented with 0.3 M sucrose before they were used for the cryopreservation technique. In the vitrification procedure, the effect of the plant vitrification solutions (PVS2 and PVS3) and exposure time were studied. The highest survival rate (88.87%) and regrowth (66.33%) were achieved when the precultured zygotic embryos were incubated in a loading solution for 20 minutes at $0^{\circ}C$. They were subsequently exposed to PVS2 for 120 minutes at $0^{\circ}C$ and plunged directly into liquid nitrogen. Cryopreservation by the encapsulation-dehydration method was successfully done by leaving the encapsulated zygotic embryos in a laminar flow for 4 hours prior to plunging into a LN. The survival rate and regrowth of the encapsulated zygotic embryos were 37.50% and 27.98%, respectively. The cryopreserved zygotic embryos were able to develop into whole plants.

Cryopreservation of in Vitro Grown Shoot Tips of Sweet Potato (Ipomoea batatas L.) by the Encapsulation-Vitrification Method

  • Yi, JungYoon;Lee, GiAn;Lee, YoungYi;Gwag, JaeGyun;Son, EunHo;Park, HongJae
    • 한국자원식물학회지
    • /
    • 제29권6호
    • /
    • pp.635-641
    • /
    • 2016
  • Sweet potato (Ipomoea batatas L.) shoot tips grown in vitro were successfully cryopreserved by encapsulation-vitrification. Encapsulated explants are very easily manipulated, due to the relatively large size of the alginate beads, and a large number of samples can be treated simultaneously. In this study, the effects of sucrose preculture, cryoprotectant preculture, and post-warm recovery media on regrowth, following liquid nitrogen (LN) exposure, were investigated to establish an efficient encapsulation-vitrification protocol for sweet potato. Shoot tips of plants grown in vitro were precultured in 0.3 M sucrose for 2 d before encapsulation. Encapsulated shoot tips were pre-incubated in liquid MS (Murashige and Skoog) medium containing 0.5 M sucrose for 16 h, before preculturing in sucrose-enriched medium (0.7 M sucrose) for 8 h. Shoot tips were osmoprotected with 35% plant vitrification solution 3 (PVS3) for 3 h, before being dehydrated with PVS3 for 2 h at $25^{\circ}C$. The encapsulated and dehydrated shoot tips were transferred to 2 mL cryotubes, suspended in 0.5 mL PVS3, and plunged directly into liquid N. High levels of shoot formation were obtained for the cv. Yeulmi (65.7%) and Yeonwhangmi (80.3%). The regrowth rates of cryopreserved samples in Yeulmi (78.9%) and Yeonwhangmi (91.3%), following culture on ammonium-free MS medium for 5 d, were much higher than those cultured on standard MS medium (65.7% and 80.3%, respectively). This encapsulation-vitrification is a promising method for the long-term preservation of sweet potato.

Optimization Conditions for Cryopreservation of Deutzia paniculata Nakai, Endangered Plant

  • Seol, Yuwon;Yong, Seong Hyeon;Choi, Eunji;Jeong, Mi Jin;Suh, Gang Uk;Lee, Cheul Ho;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • 제36권4호
    • /
    • pp.274-280
    • /
    • 2020
  • As the importance of biological resources increases, the conservation technology is becoming important for rarities. This study was conducted to establish an efficient cryopreservation conditions for the Deutzia paniculata, endangered plant species, by using both cryopreservation methods of vitrification and encapsulation. As a result, the sucrose pretreatment seed viability showed up to 30.7% in the treatments. The cryoprotectant treatment improved the viability of the seeds, and was found to be excellent in the vitrification method using PVS3. The vitrification method had over 10% higher germination rate than the seeds preserved by encapsulation. In addition, the germination rate showed a significant difference according to the cryopreservation treatment time, and the germination rate of seeds decreased very much as the long time became longer. Plants germinated from preserved seed in liquid nitrogen showed poor growth compared to untreated, and good growth in PVS3 120 minutes. In addition, the growth of germinated plants by liquid nitrogen treatment time was better in the vitrification method. These results are expected to be useful for long-term preservation of D. paniculata, endangered plants.

벼 체세포배를 알긴산 캡슐에 넣어 제작한 건조형 인공종자 (Production of Dry-Type Artificial Seeds Using Alginate-Encapsulated Rice Somatic Embryos)

  • 정원중;민성란;송남희;유장렬
    • 식물조직배양학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 1995
  • 벼의 인공종자를 무균상에서 건조시킴으로써 건조형 인공종자를 제조하였다. 1/2 MS배지에서 80%의 수분 손실률을 가진 인공종자는 20%가 발아하였다. 0.1 mg/L ABA가 첨가된 알긴산용액으로 제조한 인공종자는 0-90%의 수분손실률에서 최고 1.7배까지 발아율이 향상되었다. 이러한 결과는 ABA가 인공종자의 제조 및 건조과정에서 물리적 혹은 생리적인 저해에 대한 보호기능을 나타낸 것으로 사료된다.

  • PDF

두릅나무 피복체세포의 기내발아 (In Vitro Germination of Encapsulated Somatic Embryos of Angelica Tree(Aralia elata Seem.))

  • 박철호
    • 한국자원식물학회지
    • /
    • 제7권2호
    • /
    • pp.133-135
    • /
    • 1994
  • Germination rate of encapsulated somatic embryos shelved significant differences under different concentrations of AgN03. The highest germination rate of 81.2% was found on MS medium withouthormones mixed with 10 mg/1 of AgN03. In vitro vermiculite planted with encapsulated embryostreated with 10 mg/1 of AgN03 induced 24.7% germination rate, and vermiculite planted with encap-sulated embryos treated with 40 mg/1 or 80 mg/1 of AgNO, induced no germination at all.

  • PDF

Development of Cryopreservation System using Shoot-Apex in Yam (Dioscorea batatas)

  • Shin Jong-Hee;Kang Dong-Kyoon;Bae Jeong-Suk;Lee Bong-Ho;Sohn Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 2006
  • The goal of this research was to develop an efficient cryopreservation protocol for germplasms of yam (Diosorea batatas), that were cultivated in Korea. Comparative studies with four other cryogenic techniques and subsequent experiments for shoot regrowth were conducted. in vitro-grown shoot-apices of the D. batatas were successfully cryopreserved by encapsulation-dehydration. The maximum survival of shoot-apices could be achieved when the precultured (with 0.3 M of sucrose for one day) and encapsulated (with a 3%(w/v) Na-alginate solution) apices were dehydrated for $3.5{\sim}4\;h$ prior to direct immersion in LN (liquid nitrogen). The frequency of regrowth rate of cryopreserved apices was not decreased during 3-month storage period. The thawing method markedly affected survival of the cryopreserved apices, and thawing at $40^{\circ}C$ for 3 min produced the best results. When cryopreserved apices were post-cultured on the post-culture medium (MS), supplemented with $0.2mgl^{-1}$ of BA ($N_6$-benzyladenine) and $0.2mgl^{-1}$ of kinetin, they showed direct shooting without callusing.

Cryopreservation of Capsicum annum var. grossum using encapsulation/dehydration of apices produced in vitro

  • Senarath, Wtpsk;Lee, Kui-Jae;Rehman, S.;Lee, Wang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.53-53
    • /
    • 2002
  • Shoot tips of in vitro propagated plantlets were cryopreserved using encapsulation/dehydration procedures. Shoot tips were excised under filter sterilized antioxidants solution (0.2M phosphate buffer, pH 5.7 supplemented with 5g/1 ascorbic acid and 15g/1 sodium borate). They were drawn up into a sterile 10 $\textrm{cm}^3$disposable pipette and were dropped into the culture medium with 2.5w/v Na-alginate, then into 100mM CaCl$_2$.2$H_2O$. Encapsulated shoot tips were transferred into 10㎤ of liquid culture medium with a range of sucrose concentrations (0.25-1.0M) and were incubated in dark for 24 hours in 18C at 40rpm. Beads were then dehydrated in silica gel for different time intervals (1-24 hours). Then they were freeze dried either rapidly (plunge directly into liquid N2 or in two stages (samples were kept at 20C for 10 minutes, then reduced to 35C at 1C per minute. Then, plunge into liquid $N_2$). The influence of sucrose and silica gel pre-treatment on pre- and post-freeze shoot growth was examined.(중략)

  • PDF