• Title/Summary/Keyword: Emission Wavelength

Search Result 625, Processing Time 0.029 seconds

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

Broadcast Signal Transmission on a WDM-PON System Using a Polarization Independent RSOA and a Broadband ASE Light Source (광대역 ASE 광원과 PI-RSOA를 이용한 WDM-PON 시스템에서의 방송 신호 전송)

  • Oh, Yeong Guk;Lee, Hyuek Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.264-268
    • /
    • 2012
  • In this paper, we propose a new method for broadcasting in a WDM-PON system which has the merits of a simple and cost effective structure. It can be constructed using only an ASE (Amplified Spontaneous Emission) light source and a PI-RSOA (Polarization Independent - Reflective Semiconductor Optical Amplifier). Error-free broadcast signal transmission over 30 Km for 24 channels at 1.25 Gb/s has been successfully demonstrated.

Fabrication of Blue OLED with GDI Host and Dopant (GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작)

  • Jang, Ji-Geun;Shin, Se-Jin;Kang, Eui-Jung;Kim, Hee-Won;Seo, Dong-Gyoon;Lim, Yong-Gyu;Chang, Ho-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Synthesis and color-controllable luminescence in Dy3+-activated CaWO4 phosphors

  • Du, Peng;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.170.2-170.2
    • /
    • 2015
  • Enormous interest in trivalent rare-earth (RE) ions activated luminescent materials has been gaining owing to their promising applications in bio-imaging, solar cells, white light-emitting diodes and field-emission displays. Among these trivalent RE ions, dysprosium (Dy3+) was widely investigated due to its unique photoluminescence (PL) emissions. A series of Dy3+-activated CaWO4 phosphors were prepared by a facile high-temperature solid-state reaction method. The X-ray diffraction, PL spectra, cathodoluminescence (CL) spectra as well as PL decay curves were used to characterize the prepared samples. Under ultraviolet light excitation, the characteristic emissions of Dy3+ ions were observed in all the obtained phosphors. Furthermore, the PL emission intensity increased gradually with the increment of Dy3+ ion concentration, reaching its maximum value at an optimized Dy3+ ion concentration. Additionally, color-tunable emissions were obtained in Dy3+-activated CaWO4 system by adjusting the Dy3+ ion concentration and excitation wavelength. Ultimately, strong CL properties were observed in Dy3+-activted CaWO4 phosphors. These results suggested that the Dy3+-activted CaWO4 phosphors may have potential applications in the field of miniature color displays.

  • PDF

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

Photoluminescence Property of Lu2Si2O7:Ce3+ Powder for Scintillator

  • Kim, Kyung-Nam;Cao, Guozhong
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.212-215
    • /
    • 2016
  • In this paper, cerium doped lutetium pyrosilicate (LPS) powders with cerium content (0.05 and 0.07 mol%) were prepared by sol-gel process. The formation of lutetium pyrosilicate (LPS) phase was confirmed by XRD analysis for the powders heated at $1,200^{\circ}C$; in these powders, a single phase of $Lu_2Si_2O_7$ (LPS) was observed. Cerium doped lutetium pyrosilicate (LPS) powder was agglomerated and constituted of small spherical particles with diameters of about 300 nm. The photoluminescence spectra of the $Lu_2Si_2O_7:Ce^{3+}$ powders showed the characteristic of excitation and there was an emission spectrum for $Ce^{3+}$ in the host of $Lu_2Si_2O_7$. The emission spectrum shows a broad band in the range of 350-525 nm; the broad wavelength on the right side of the spectra should be ascribed to the same 5d-4f transitions of $Ce^{3+}$, as in the case of cerium doped $Lu_2Si_2O_7$ single crystals.

Electrical and NO Conversion Characteristics of Dielectric Barrier Discharge Process (질소산화물 제거를 위한 무성 방전 공정의 전기 및 NO 전환 특성)

  • Lee, Yong-Hwan;Jeong, Jae-U;Jo, Mu-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.1
    • /
    • pp.15-21
    • /
    • 2002
  • We investigated effects of electrical, physical, and chemical parameters on energy transfer, NO conversion, and light emission in the dielectric barrier discharge (DBD) process. As gap distance between electrodes increased, discharge onset voltage increased. However, as gap distance between electrodes increased, electric field which initiates discharge showed approximately the same value, 30kV/cm. The discharge onset voltage of the coarse surface electrode was lower than that of the smooth surface electrode. And, energy transfer was slightly enhanced in the coarse electrode condition. However, NO conversion rate decreased with the coarse surface electrode because more uniform discharge can be obtained on the smooth surface electrode. The NO conversion rate increased with decreasing the initial concentration, so the DBD process is more feasible in the lower concentration condition. The variation of gas residence time tested at the same energy density in the experiment did not affect on the NO conversion. The result shows that the NO conversion rate mainly depends on the energy density. The DBD process is able to adjust on plasma-photocatalyst process because it emits the short wavelength light in the range of ultraviolet. The intensity of light emission increased with the increase of the energy transfer to the reactor and the gas flow rate.

Indirect Determination of Cetirizine Hydrochloride by ICP-AES

  • Wang, Li-Sheng;Wei, Xiao-Ling;Gong, Qi;Jiang, Zhi-Liang;Li, Dong-Mei;Liang, Qing
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.595-598
    • /
    • 2011
  • Cetirizine hydrochloride reacted with $BiI_4^-$ in an acidic aqueous solution to form precipitate. After centrifugation, the atomic emission intensity of $Bi^{3+}$ contained in the supernatant solution was measured at the characteristic wavelength of 206.170 nm. The difference between the spectral signal intensity of the blank solution and that of the supernatant, ${\Delta}I$, was linearly related to the concentration of cetirizine hydrochloride. As a result, a new inductively coupled plasmaatomic emission spectrometric (ICP-AES) method was developed for the analysis of cetirizine hydrochloride. The linear range was from 27.7 to 184.8 $mg{\cdot}L^{-1}$, with a correlation coefficient (r) of 0.9961 and a detection limit of 9.6 $mg{\cdot}L^{-1}$. This method is simple and accurate, Without using toxic organic solvents, and is feasible for the quality control of cetirizine hydrochloride tablets and capsules.

Characterization of amplified spontaneous emission light source from an $Er^{3+}$/$Tm^{3+}$co-doped silica fiber ($Er^{3+}$$Tm^{3+}$이 복합 첨가된 실리카 광섬유의 ASE 광원에 대한 특성 평가)

  • Jeong, Hoon;Oh, K.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.96-97
    • /
    • 2000
  • Incoherent broadband optical sources have been applied in various areas such as a light source for optical device characterization, fiber-optic gyroscopes$^{(1)}$ , and spectrum sliced light source in wavelength division multiplexing (WDM) system$^{(2)}$ . To utilize the inherent low loss in silica optical fibers, various types of incoherent light sources are being developed. Among the light sources, the amplified spontaneous emission (ASE) from a rare earth doped fiber has benefits in temperature stability, high output power, low polarization dependence over semiconductor diodes$^{(3)}$ . Recently erbium doped fibers (EDF) have been intensively researched for ASE sources as well as optical amplifiers$^{(4)}$ . The spectrum of ASE from an EDF, however, is limited in the 1520~1560 nm range in conventional configurations. In this letter we described a new broadband ASE source which included both the conventional ASE band of Er$^{3+}$ ion, 1520nm~1560nm and ASE band from Tm$^{3+}$ ions that extends the bandwidth further. For the first time, to the best knowledge of authors, a fiber ASE source based on the energy transfer between Er$^{3+}$ and Tm$^{3+}$ ions in the range of 1460~1550 nm, has been demonstrated using a single 980nm pump laser diode. (omitted)omitted)

  • PDF

Phenomenological Nonlinear Gain Saturation Effect on the Noise Characteristics of a Multi-electrode DBR Laser with Continuous Frequency Tuning (연속 파장 가변시 현상론적인 비선형 이득포화효과가 다전극 DBR 레이저의 잡음특성에 미치는 영향)

  • 이석목;최원준;한일기;김회종;우덕하;김선호;이정일;감광남;박홍이
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • Phenomenological nonlinear gain saturation effect on the noise characteristics of a multi-electrode DBR laser, when the lasing wavelength changes continuously, is presented theoretically. Using the optical transmission line theory, noise characteristics reliant on output power are analyzed by taking into account both the spontaneous enhancement factor K due to the distribution of the spontaneous emission along the active cavity and the nonlinear gain saturation effect. Spontaneous emission rate was increased due to an increase in injected current into the passive section, which in turn lead to increase in relative intensity noise (RIN) and frequency noise. Phenomenological nonlinear gain saturation was found to have significant effect on RIN and frequency noise characteristics. However. Iinewidth was found to decrease due to a phenomenological nonlinear gain saturation effect. ffect.

  • PDF