• Title/Summary/Keyword: Emission Factors

Search Result 928, Processing Time 0.021 seconds

Assessment of N2O Emission Factor of Autumn Chinese Cabbage Fields at Three Different Geographical Location in South Korea

  • Kim, Gun-Yeob;Park, Woo-Kyun;Jeong, Hyun-Cheol;Lee, Sun-il;Kim, Pil-Joo;Seo, Young-Ho;Na, Un-sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.163-169
    • /
    • 2015
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic sources, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission in the agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of this study was to develop an emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the Chinese cabbage during autumn season in 2010-2012. Emission factor of $N_2O$ calculated over three years experiment using accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0058{\pm}0.00254kg\;N_2O-N\;kg^{-1}\;N$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices as well as crop species.

Annual Variability in Nitrous Oxide Emission from Agricultural Field Soils (농경지 아산화질소 배출계수의 연간 변동 특성 분석)

  • Hyun, Junge;Yoo, Sin Yee;Yang, Xing Ya;Lee, Jong Eun;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2017
  • We aimed at investigating the difference in $N_2O$ emission factors of chemical and organic fertilizers and identifying the main factors influencing annual fluctuations in $N_2O$ emission. We conducted two-year experiments in 2016 and 2017 in an agricultural field planted with sweet potato (Ipomoea batatas). Treatments included chemical NPK fertilizer (NPK) and chicken compost application at $10\;ton\;ha^{-1}$, $20\;ton\;ha^{-1}$, and $30\;ton\;ha^{-1}$ rates (CK1, CK2 and CK3). Control was also employed with no addition. Results showed that $N_2O$ emission rates were significantly related with soil water status and soil available N contents. Significant correlation between % water filled pore space (WFPS) and $N_2O$ emission was observed only when the %WFPS was greater than 40% and during the initial stage of the experiment (<60 d). Comparison of the emission factors in 2016 and 2017 showed us that the emission factor was greater in 2016 when the %WFPS was maintained higher by 16.5% compared to that in 2017. In 2016, the emission factor of organic fertilizer was higher than that of chemical fertilizer, while in 2017, the pattern was reversed. Annual variability in $N_2O$ emission could also be originated from the available N contents remaining in soil after being taken up by plants. If we apply excessive N fertilizer, the soil would contain excess amount of N which was not uptaken by plants, leading to a huge increase in $N_2O$ emission. This case would overestimate emission factor, which was the case for the organic fertilizer in 2016. Over-fertilization should be avoided when we set up an experiment to determine $N_2O$ emission factor.

A Study on Worker Exposure to Trichlorethylene and Emission Factor for Degreasers in Plating Plants (중소기업 도금공정에서의 트리클로로에틸렌 폭로와 발산량에 관한 연구)

  • Lee, Keoung Hee;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.3-13
    • /
    • 1993
  • This study was conducted at seven degreasing processes in plating plants located in Seoul, Incheon, Ansan, and Taejeon areas from July 21 to august 27, 1992. This study was performed to assess the TWA exposures to trichloroethylene (TCE) and evaluate factors affecting TCE concentrations in degreasing process. Two-Point Eddy Diffusional Model suggested by Wadden et al. was employed to calculalte emission factors according to degreaser type. Results are summarized as follows. 1. The TWA exposures of the degreasing operators ranged from 1.4 ppm to 123 ppm, and those of three plants out of seven were exceeding 50 ppm of both the Korean and U.S. OSHA standards. Degreasing assistant of Plant B, was exposed to 59 ppm. 2. The average concentrations at the distance 0, 1.5, 3.0 m from the degreasers were 1.014, 24, and 18 ppm, respectively, and showed a signifficant difference by distance (p<0.01). 3. The emission of TCE was reduced by installing local exhaust systems, condensers, and refrigeration lines at the degreasers (p<0.01). 4. The major factors related to exposure of operators were workload (r=.9621. p<0.01) and dimensions of degreansing room(r=-.8667, p<0.05). 5. If the air in degreasing room is mixed violently by other factors in addition to diffusion, the emission factors can not be evaluated because the important hypothesis of the Two-Point Eddy Diffusional Model can not be accepted. 6. The ultrasonic degreaser without the local exhaust ststem, condenser, and refrigeration lines emitted TCE three times greater than the ultrasonic degreaser with condenser and refrigeration 1ines only.

  • PDF

Nitrous Oxide Emissions from Red Pepper, Chinese Cabbage, and Potato Fields in Gangwon-do, Korea

  • Seo, Youngho;Kim, Gunyeob;Park, Kijin;Kim, Kyunghi;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.463-468
    • /
    • 2013
  • The level of nitrous oxide ($N_2O$), a long-lived greenhouse gas, in atmosphere has increased mainly due to anthropogenic source, especially application of nitrogen fertilizers. Quantifying $N_2O$ emission from agricultural field is essential to develop national inventories of greenhouse gases (GHGs) emission. The objective of the study was to develop emission factor to estimate direct $N_2O$ emission from agricultural field in Gangwon-do, Korea by measuring $N_2O$ emissions from potato (Solanum tuberosum), red pepper (Capsicum annum L.), and Chinese cabbage (Brassica campestris L.) cultivation lands from 2009 to 2012. Accumulated $N_2O$ emission was $1.48{\pm}0.25kg$ $N_2O-N\;ha^{-1}$ for red pepper, $1.27{\pm}0.27kg$ $N_2O-N\;ha^{-1}$ for potato, $1.49{\pm}0.06kg$ $N_2O-N\;ha^{-1}$ for Chinese cabbage cultivated in spring, and $1.14{\pm}0.22kg$ $N_2O-N\;ha^{-1}$ for fall Chinese cabbage. Emission factor of $N_2O$ calculated from accumulated $N_2O$ emission, nitrogen fertilization rate, and background $N_2O$ emission was $0.0051{\pm}0.0016kg$ $N_2O-N\;ha^{-1}$ N for cropland in Gangwon province. More extensive study is deserved to be conducted to develop $N_2O$ emission factor for upland crops in Korea through examining the emission factors from various regions and crops because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

A Study on the Estimation of Emission Factors and Emission Rates for Motor Vehicles (자동차에 의한 오염물질 배출계수 및 배출량 산출에 관한 연구)

  • 조강래;엄명도;김종춘;홍유덕;김종규;한영출
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Exhaust emissions are calculated as a product of the emission factor and the vehicle kilometer traveled(VKT). The emission factor is a function of several parameters such as vehicle model year, vehicle mileage, traffic conditions, etc. The representative driving cycles classified as ten different types of an average vehicle speed were selected by analyzing passenger car driving patterns in Seoul. 51 vehicles were sampled and analyzed by types of vehicles, fuels used, model years and vehicle mileages also, exhaust emissions of them were measured by chassis dynamometer. Regression equations between average vehicle speeds and exhaust emissions are made for the estimation of emission factors at different vehicle speeds. Annual emission rates of air pollutants from motor vehicles in Korea were 1116$\times10^3 ton, 149\times10^3 ton, 413\times10^3 ton and 67\times10^3$ ton for CO, HC, NOx and particulats, respetively in 1990. It was found that 56% of CO and 49% of HC were originated from passenger cars and taxis, in addition, 87% of NOx and 100% of particulates were from buses and trucks using diesel fuels.

  • PDF

Comparison of Correlation between CVS-75 Mode and Korea Mode to Estimate Emission Factors from Vehicles (자동차 오염물질 배출계수 산정을 위한 CVS-75모드와 국내차속모드의 상관성 비교 연구)

  • Jung, Sung-Woon;Ryu, Jeong-Ho;Lyu, Young-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.383-391
    • /
    • 2006
  • In Korea, the major source of serious air pollution is motor vehicles. Air pollution from vehicles has been annually increased. Then the government will try to control the vehicle emission by applying the effective emission management policy for the manufactured and in-used car. It is necessary to correctly calculate the emission factor for successful propulsion of the vehicle emission control policy. In this study, correlation analysis of exhaust emissions from vehicles between CVS-75 mode and Korea mode was conducted. A total of 25 light-duty buses were tested on the chassis dynamometer system in order to measure CO, HC, NOx PM and fuel efficiency (F.E.). For the test modes, 10 different Korea modes and CVS-75 mode were used. As the result of correlation analysis between those modes, most of the correlation coefficients were higher than 0.90. On the basis of high correlation between those modes, correction factors by driving conditions were estimated. Through the results of this study, we obtained essential basic data to correct difference from those modes.

Analysis of the Present State of Air Pollutant Emission Data for the Greater Seoul Area (서울.수도권 지역 주요 대기오염물질 배출원 자료 현황 분석)

  • 김진영;김영성;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.813-826
    • /
    • 1999
  • To understand the present status of air pollutant emission data for the greater Seoul area, existing air pollutant emission data were analyzed and compared. For the criteria pollutants, estimation methods of emissions from point, line, and area sources adopted in the previous studies were analyzed and their results were compared. Two sets of VOC emission estimation were also compared and analyzed. There exists a large discrepancy among previous emission data due to the differences in the scope of emission sources and the estimation method including emission factors employed in each estimation. Applications of previous air pollutant emission studies for air quality modeling and related problems were discussed.

  • PDF

The Development of Emission Factors of Greenhouse Gas from Middle and Small-Scaled RPF Incineration Facility by Concentration Measurement and Fuel Composition (농도실측 및 연료 성분조성에 의한 중소형 RPF 소각시설의 온실가스 배출계수 개발)

  • Na, Kyung-Ho;Song, Il-Seok;Choi, Si-Lim;Yoo, Jae-In;Park, Ik-Beom;Kim, Jin-Gil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.423-434
    • /
    • 2012
  • This study was carried out to develop for the emission factor of greenhouse gas (GHG) from medium and smallscaled incineration facility using RPF which is considering as a part of renewable energy in UNFCC. The actual concentration of the exhaust gas and the fuel composition of RPF were measured for the calculation of GHG emission factor in RPF incinerators, and were compared with the IPCC guideline. The $CO_2$ and $N_2O$ emission factors by the actual concentration of exhaust gas were $2.3575{\pm}1.0070tCO_2/tRPF$ and $0.0014{\pm}0.0014tN_2O/tRPF$ respectively. Also, $CO_2$ emission factor by the RPF composition was $2.7057{\pm}0.0540tCO_2/tRPF$. The GHG emission factor per energy by the actual concentration was $83.0867{\pm}26.0346tCO_2e/TJ$ which showed higher consistency with the GHG emission factor ($80.3967tCO_2e/TJ$) of waste plastic in the IPCC guideline (2006b). The $CO_2$ and $N_2O$ emission factor calculated in this study is considered as a meaningful data for GHG emission factor of RPF incineration facility because of not being developed in ROK.

Analysis of dust emission characteristic by drop impact on decomposed granite soil (낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석)

  • Min, Seul-Gi;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.