• Title/Summary/Keyword: Embossing process

Search Result 127, Processing Time 0.029 seconds

Optimization of Pre-form for Manufacturing of Automobile Drum Clutch Hub Products Using Taguchi Method (다구찌기법을 이용한 자동차용 드럼 클러치 허브 제조를 위한 예비성형체의 최적화)

  • Kim, Seung-Gyu;Park, Young-Chul;Park, Joon-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.101-108
    • /
    • 2010
  • The drum clutch investigated in this study is formed in 5 forming steps, which are 1st deep drawing, 2nd deep drawing, restriking, embossing, and $Grob^{TM}$ processes. Dimensional accuracy of the final products greatly depends upon how much more accurate pre-form is manufactured in the previous forming processes before the $Grob^{TM}$ process. The deep drawing, restriking and embossing processes in which the pre-form is formed are very important and decisive steps. Thus in some cases, excessive strain by these operations causes dimensional inaccuracy and cracks initiated from the base and wall of the product. Process variables such as the punch shapes both of 1st and 2nd deep drawing, and punch angle were selected to evaluate the deformation characteristics. The optimum parameters were determined from forming simulations using commercial FEM codes, DEFORM and Tauchi method, specifically developed for metal forming simulation. Finally, experiments for the whole drum clutch forming processes were carried out to verify the optimized forming parameters and the analytical results.

Forming of Circular Protrusion by Half-Piercing and its Application to Marking of Sheet Metal (하프피어싱에 의한 원형돌기의 성형 및 마킹공정에의 응용)

  • Jung, H.K.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.202-206
    • /
    • 2012
  • Marking is a process that engraves letters or a pattern onto the surface of sheet metal. During marking, it is important to set the proper working conditions for clarity of the letters. In this study a simple case for forming circular protrusions by half-piercing and embossing was initially attempted to determine the working conditions which gave good results with respect to shape accuracy. Corner-radius and flatness of circular protrusions made under several experimental conditions were measured and compared. It is shown that the precision of protrusions by half-piercing is superior to that of embossing, and the clearance between punch and die exerts a strong influence on the shape accuracy rather than the penetration percentage into the thickness of the sheet metal. The marking dies for "SNUT" letters, as an example, by applying the above results were manufactured with four different clearances. The working variables for the experiment were clearance and marking depth. For the very shallow depth of 0.1mm the letters were not clearly read. Letters marked under other conditions were easily distinguished with increasing marking depth. It was confirmed that the half-piercing technique with proper values of the working variables gives good quality for the marking of sheet metal.

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Physical and Optical Properties of PMMA/PVDF Blends (PMMA/PVDF 화합물의 물성 및 광학적 성질)

  • 김병철;최춘기;한상필;윤근병;정명영
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.462-467
    • /
    • 2002
  • Blends of polymethylmethacrylate (PMMA) with polyvinylidenefluoride (PVDF) were prepared by melt mixing and investigated for optical waveguide devices by using hot embossing process. The glass transition temperatures ($T_g$) of the blends were decreased with increasing PVDF contents. However, the crystalline of PMMA/PVDF blends was not appeared by DSC and XRD due to miscibility between PMMA and PVDF. Shear viscosities and refractive indices of the blends were decreased with increasing PVDF contents. Optical transmittances and absorption losses of the blends were improved with increasing PVDF contents. This is due to a decreasing of polarizability of molecules by fluorine molecule in the PVDF.

Thermal oxidation effect for sidewall roughness minimization of hot embossing master for polymer optical waveguides (고분자 광도파로용 핫엠보싱 마스터의 표면거칠기 최소화를 위한 열산화 영향)

  • 최춘기;정명영
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • Hot embossing master is indispensable for the fabrication of polymeric optical waveguides using hot embossing technology. Sidewall roughness of silicon master is directly related to optical loss of optical waveguides In this paper, a silicon master was fabricated by using a deep-RIE process. Additionally, thermal oxidation followed by oxide removal was carried out to minimize etched Si sidewall roughness. Thermal oxidation and oxide removal were performed with $H_2O_2$ atmosphere at $1050^{\circ}C$ and $NH_4$F:HF=6:l BOE, respectively, for the oxide thickness of 400$\AA$, 1000$\AA$, 3000$\AA$, 4500$\AA$, 5600$\AA$ and 6200$\AA$. The sidewall roughness was characterized by SEM and SPM-AFH measurements. We found that the roughness was improved from 12nm (RMS) to 6nm (RMS) for the scalloped sidewall and from 162nm (RMS) to 39nm (RMS) for the vertical striation sidewall, respectively.

Surface Polishing of Polymer Microlens with Solvent Vapor (솔벤트 증기를 이용한 폴리머 마이크로 렌즈의 표면 연마)

  • Kim, Sin Hyeong;Song, Jun Yeob;Lee, Pyeong An;Kim, Bo Hyun;Oh, Young Tak;Cho, Young Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.644-649
    • /
    • 2013
  • Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with $300{\mu}m$ diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.

Study on Fabrication of Highly Ordered Nano Patterned Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 패턴 마스터 제작에 관한 연구)

  • Shin, H.G.;Kwon, J.T.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.368-370
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. The resulting good filled uniform nano molded structure through hot embossing molding process shows the validity of the fabricated nano pattern masters.

  • PDF

Structural Dynamics Modification Using Surface Grooving Technique (임의의 형태를 갖는 흠을 이용한 표면형상변형을 통한 동특성 변경)

  • 박미유;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.859-863
    • /
    • 2004
  • Structural Dynamics Modification is very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material property, changing shape of structure. In this research, using the surface grooving technique, shape of base structure was changed to improve its first natural frequency. Utilizing the result of sensitivity analysis, groove shape was formed gathering the many small embossing elements. For this process, Sensitivity Criterion Factor was introduced. To reduce its amount of calculation, the range of target area was restricted to their neighboring area and that result was very successful.

  • PDF

Fabrication of High Ordered Nano-sphere Array on Curved Substrate by Nanoimprint Lithography (나노임프린트 리소그래피를 이용한 곡면 기판 위에 정렬된 나노 볼 패턴 형성에 관한 연구)

  • Hong, S.H.;Bae, B.J.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.331-334
    • /
    • 2008
  • The replica of highly ordered nano-sphere array patterns were fabricated using hot embossing method. First, silica nano-sphere array on Si substrate was transferred to PVC film at $130^{\circ}C$ and 7 bar using hot embossing process. Then, silica nano-sphere array on PVC template was removed by soaking the PVC film in buffered oxide etcher. In order to form anti-stiction layer, the PVC template was coated with silicon dioxide layer and self-assembled monolayer. Through UV nanoimprint lithography with the fabricated flexible PVC template, highly ordered nano-sphere array pattern was imprinted on curved substrates with high fidelity.

A Study on the improvement of Formability of sheet metal inner structure (박판 내부구조재의 성형성 향상에 관한 연구)

  • Kim H. J.;Choi D. S.;Jae T. J.;Park J. H.;Jung D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.423-427
    • /
    • 2005
  • Sandwich structures, which are composed of a thick core between two thin faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Depending on the application of a particular sandwich structure, various types of cores can be used. The production of sandwich sheets by a rolling process, which is a more efficient and economical approach compared to other types of processes, has become an increasingly important subject of study. In this paper, we have studied the embossing structure of sheet type and developed embossing roll mold with $\Phi3$ pattern and roll forming system.

  • PDF