• Title/Summary/Keyword: Embedding theorem

Search Result 18, Processing Time 0.021 seconds

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

Neural Theorem Prover with Word Embedding for Efficient Automatic Annotation (효율적인 자동 주석을 위한 단어 임베딩 인공 신경 정리 증명계 구축)

  • Yang, Wonsuk;Park, Hancheol;Park, Jong C.
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.399-410
    • /
    • 2017
  • We present a system that automatically annotates unverified Web sentences with information from credible sources. The system turns to neural theorem proving for an annotating task for cancer related Wikipedia data (1,486 propositions) with Korean National Cancer Center data (19,304 propositions). By switching the recursive module in a neural theorem prover to a word embedding module, we overcome the fundamental problem of tremendous learning time. Within the identical environment, the original neural theorem prover was estimated to spend 233.9 days of learning time. In contrast, the revised neural theorem prover took only 102.1 minutes of learning time. We demonstrated that a neural theorem prover, which encodes a proposition in a tensor, includes a classic theorem prover for exact match and enables end-to-end differentiable logic for analogous words.

AN EMBEDDING THEOREM FOR NORMED ALMOST LINEAR SPACES

  • Lee, Sang-Han;Kim, Mi-Hye
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.517-523
    • /
    • 1998
  • In this paper we prove that a normed almost linear space \hat{X} can be embedded in a normed linear space X when a normed almost linear space X has a basis and splits as X=V+W. Also we have a metric induced by a norm on a normed almost linear space as a corollary.

EMBED DINGS OF LINE IN THE PLANE AND ABHYANKAR-MOH EPIMORPHISM THEOREM

  • Joe, Do-Sang;Park, Hyung-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.171-182
    • /
    • 2009
  • In this paper, we consider the parameter space of the rational plane curves with uni-branched singularity. We show that such a parameter space is decomposable into irreducible components which are rational varieties. Rational parametrizations of the irreducible components are given in a constructive way, by a repeated use of Abhyankar-Moh Epimorphism Theorem. We compute an enumerative invariant of this parameter space, and include explicit computational examples to recover some classically-known invariants.

PLANE EMBEDDING PROBLEMS AND A THEOREM FOR INFINITE MAXIMAL PLANAR GRAPHS

  • JUNG HWAN OK
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.643-651
    • /
    • 2005
  • In the first part of this paper we investigate several statements concerning infinite maximal planar graphs which are equivalent in finite case. In the second one, for a given induced $\theta$-path (a finite induced path whose endvertices are adjacent to a vertex of infinite degree) in a 4-connected VAP-free maximal planar graph containing a vertex of infinite degree, a new $\theta$-path is constructed such that the resulting fan is tight.

THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES

  • Kim, Kwang-Whoi
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.661-681
    • /
    • 2004
  • We research properties of the space of measurable functions square integrable with weight exp$2\nu $\mid$x$\mid$$, and those of the space of Fourier hyperfunctions. Also we show that the several embedding theorems hold true, and that the Fourier-Lapace operator is an isomorphism of the space of strongly decreasing Fourier hyperfunctions onto the space of analytic functions extended to any strip in $C^n$ which are estimated with the aid of a special exponential function exp($\mu$|x|).

REPRESENTATION OF $L^1$-VALUED CONTROLLER ON BESOV SPACES

  • Jeong, Jin-Mun;Kim, Dong-Hwa
    • East Asian mathematical journal
    • /
    • v.19 no.1
    • /
    • pp.133-150
    • /
    • 2003
  • This paper will show that the relation (1.1) $$L^1({\Omega}){\subset}C_0(\bar{\Omega}){\subset}H_{p,q}$$ if 1/p'-1/n(1-2/q')<0 where p'=p/(p-1) and q'=q/(q-1) where $H_{p.q}=(W^{1,p}_0,W^{-1,p})_{1/q,q}$. We also intend to investigate the control problems for the retarded systems with $L^1(\Omega)$-valued controller in $H_{p,q}$.

  • PDF