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EMBEDDINGS OF LINE IN THE PLANE AND
ABHYANKAR-MOH EPIMORPHISM THEOREM

DosaNG JOE AND HYUNGJU PARK

ABSTRACT. In this paper, we consider the parameter space of the rational
plane curves with uni-branched singularity. We show that such a param-
eter space is decomposable into irreducible components which are ratio-
nal varieties. Rational parametrizations of the irreducible components
are given in a constructive way, by a repeated use of Abhyankar-Moh
Epimorphism Theorem. We compute an enumerative invariant of this
parameter space, and include explicit computational examples to recover
some classically-known invariants.

1. Introduction

Let C be a curve in the complex affine plane AZ. We call C an un-
parametrized affine embedding of line of degree d if it is isomorphic to AL and
its projective closure C is a curve of degree d in PZ. We call such a curve C
a smooth rational affine plane curve of degree d. Denote by .A(d) the space of
all unparametrized affine embeddings of line of degree d. Note that the notion
of the degree of C is well-defined with a fixed affine structure on AZ since any
affine automorphism can be extended to an automorphism of ]P’%.

Many results are available on the local properties of the parameter space
A(d). For example, one knows that it is a union of smooth irreducible varieties
[9]. Our main interest in this paper is in studying some of its global proper-
ties. As a result, we show that A4(d) is a disjoint union of smooth irreducible
rational varieties. In fact, we give explicit rational parametrizations of all of
its irreducible components, and compute the dimensions of the components. In
particular, we show that the (maximal) dimension of A(d) is d + 2 for d > 2,
and that there are exactly (@ — 1) distinct unparametrized embeddings of
line (i.e., embeddings of line up to reparametrization) passing through general
d+ 2 points in AZ for d > 2.
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The main ingredient of the proof is the Abhyankar-Moh Epimorphism The-
orem [1]. To explain this connection more explicitly, let us start by recalling a
basic definition.

Definition 1. A polynomial map ¢ = (f,g) : C! — C? is called a parametrized
affine embedding of line, or simply an embedding of line, if C[t] = C[f(¢), g(t)].

Note that the above condition amounts to the condition that the image
curve in C? is isomorphic to C! under the polynomial map. The Abyhankar-
Moh Epimorphism Theorem provides a necessary condition on the degrees of
f and g for (f, g) to be an embedding of line.

Theorem 1 ([1]). Suppose f,g are in C[t] with m := degg < n :=deg f. If
Clf(¢),9(t)] = Clt], then m divides n.

Among the curves parametrically defined by ¢ = (f,9) : C' — C? with
m dividing n, there are smooth curves and non-smooth curves. An obvious
question arises now:

How many such curves are smooth?

Since A(d) can be viewed as the space of all embeddings of line of degree
d up to reparametrization, this question naturally prompts one to study the
parameter space A(d). In fact, this was the initial motivation for the authors
to study the parameter space A(d).

We also study the parameter space M(d) of unicuspidal rational curves
with maximal tangent [4]. A(d) can be considered as a sub-variety of M(d),
consisting of the curves whose singular points lie on the line at infinity which
is the maximal tangent line. Here, the maximal tangent line means the line
which intersect the curve only at the singular point.

The variety A(d) has the main component .44 which has exactly the largest
dimension among the irreducible components. The explicit parametrization of
a Zariski open subset A5 of the main component .4, is given by monomial terms
with one exception in the homogeneous coordinates of PH?(P2, O(d)). So, in a
sense the main component is almost a toric variety. Using this parametrization,
we compute the degree of the variety .A(d). Two proofs are given: one by using
a projection and Kouchinirenko theorem on the number of solutions of a system
of equations [16, 7], the other one by a direct method.

The same parametrization can be used for degree counting for the parameter
space of rational projective plane curves with unique irreducible singular points.
As an illustration of our technique, we attempt to compute the degree of the
parameter space M(3) of cuspidal cubic curves in PZ. An explicit computation
with the computer algebra package Singular [10] shows that this degree is 24,
coinciding with a classical result [18, 15, 2].

After writing up this paper, we learned that the degree of .4(d) had been
independently obtained in a recent paper [13], as an example. The approaches,
however, appear to be substantially different. It is to be noted that our method
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produces not only the degree of the parameter space .A(d) but also an explicit
parametrization of A(d) itself.

2. Decomposition of embeddings of line

Let us start by recalling basic terminologies.

Definition 2 (c.f. [17]). A polynomial map ® : C*> — C? is called an elemen-
tary polynomial map of C? if ®(z,y) is (z,y + f(z)) or (z + g(y),y) for some
polynomial f(z) € Clz] or g(y) € Cly].

The Abyhyankar-Moh can be used to reduce the degrees of ¢ by applying
an elementary polynomial map.

Lemma 1. Let ¢ = (f,g) : C' — C? be an embedding of line in C? where
f®) = at"+art" '+ +an
g(t) = bot™ + bltm_l + -4 by,

Suppose deg f = n = k- degg = km for a positive integer k. Then there is a
unique elementary polynomial map ®(z,y) = (z — c(y),y) such that ® o p(t) =
(h(t), g(t)), ¢(0) =0, and deg h s strictly less than m. Furthermore, if f and g
are viewed as polynomials in Zag, . . ., an, bo, . . ., bn|[t], then c is a polynomial
in Zlag, ..., an,bo, ..., bn][%][t]

Proof. There are unique cg,c1,...,cx—1 € C such that the degree of
h(t) = F(t) — (cog(t)* + c1g(®)* " + - + ck—19(t))

is less than the degree of g. This is possible due to a successive application of
Theorem 1. Let ¢y = ao/bk, and suppose cg,c1, ..., ci—1 are defined then ¢; is
determined as

¢ = (am — cobk n—im — C1bk~1,n—im —** — Clm1bk—141mtm)/DETY,
where g(t)P = (3072, bit™ )P = 30 bt .

Definition 3. (1) Denote by R € Mor(C?,C?) the locus of all embeddings of
parametrized affine line and define

R(n,-) ={(f,9) € R| deg f =n, degg < n}.
Similarly, define
R(n,m) ={(f,9) € R| deg f =n, degg = m}
and
R°(n) ={(f,9) € R| deg f =n, degg < n}.
(2) Let Cr, =C* x C*! for k > 1 and Ch, ...k, = [ 11—, Ck; for ki > 1.
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Note that R(n,) =[]
R(n,-) further.

Define, for k > 1,

min, m<n (N, m). Lemma 1 will be used to decompose

Tk,m : Cx X R(m,-) — R(mk,-)
E—1

(C,g,h) = (h+zcigk_i7g)'
=0

Given ordered positive integers ki, ...,kq with [[}_; ki = n and k; > 1, by
iteratively composing 7’s we obtain a map

T(kl,...,kq) : Ck1 X (Ck2 X v+ X (qu X R(l, )) .. ) — R(n, '),
where T(kl,...,kq) = Tk1,k2~~~kq O«+- 0 qu-1,kq [o} qu,l-

Definition 4. Denote the image of this composition map by Rj, where k =
(k1,...,kq).

Lemma 2. R} is a locally closed subset of C*™! x C™+! under 7, where
n =TI, ki, m=[[{_,ki. Purthermore it is isomorphic to Cx x R(1,-) as a
variety.

Proof. Consider
7k : Cx X R(1,:) = C**1 x Cc™+1
and its converse
U — Cx x R(1,-)

in some open neighborhood U of Rj, in C**! x C™*!. Then 7 o 7 is the
identity. However 7y o mc(¢) = ¢ if and only if ¢ € Ry. This shows that R is
a closed subset of U. O

Lemma 3. Let k > 1. Endow R(l,-) with the induced Zariski topology as a
subspace of C*1 x C!. Then the polynomial map 7 : Cy x R(m,-) — R(mk, ")
sending 7(c,g,h) — (h + Ei:ol cig*t, g) is a closed map.

Proof. Let n = mk. Consider the sequences (¢}, g h{)) such that the
limit (£, g(®)) of 7(ct), g hU)) exists in R(m,-). Then the sequence
g9 has the limit g(>) = bpt™ + - - + b,,, in C™*+1. Since the first component
of 7(c), ()| (1)) has degree mk > 1, ¢ must not be zero.

Case I: Suppose that by = 0. We will show that this cannot happen. Since
the coefficient of t™* in cgj ) (g)* converges to a nonzero number, |c(()j ) | goes to
oo. By a change of coordinate ¢, we may assume that g(° (t) = b,,,_jt* +O(t!*!)
where n > [ > 1 and b,,_; # 0. Now consider the coefficients of t™*, tm+—1
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=D+ in p0) 437 9 (g0))k—i | which are
c(()])(béj))k,

C(()]) (bé]))k_lbgj),

E(k = 1) . () pg (s
__Q_(bé]))k Z(b(lj)>2),

ng) (k(bé]))kulbgj)%-k(k _ 1)(b(()]))k_2b(1])bgj) +

c(()])(k(b(()j))k—lbgj) +

kk — 1)k - 2)

g (b)),

e kOB +a(dl), ... 69 1),

where « is a homogeneous polynomial of degree k. It shows that |b(()j )| decreases
as fast as 1/|c(()j)|% , |b§j)| decreases as fast as (or faster than) 1/|c(()j)|%, e
|b§f;)_l| decreases as fast as (or faster than) 1/ Ic(()j ) |£. This is a contradiction to
b | — by #0.

Case II: Suppose that by # 0. Let f(°) = agt™ + --- + a,, with n = mk.
Then c(()j ) goes to ag/bf # 0, and ¢; goes to

k-1
(aim — cobrn—tm — C1bk—1n—tm — *** — Cl=1Bk—t+1,n—1m ) /g s

where (327 bit™ ") = 37 by ;t7. Thus, ¢ has the (bounded) limit for all
i and also the sequence hY) has the limit in C™.

Since the Zariski closure and the closure by strong topology of a constructible
subset in a variety coincide, the above arguments prove the lemma. O

Remark 1. (1) R(n,n) = C* x R(n,-) by sending (f,g) to (Z—?),(f,g - %%f)),
where f = Y a;t"" and g = 37 bit"*. Here the equivalence symbol
means that there are regular maps between open subsets containing R, ,, and
C* x R(n,-) in C**! x C"*! such that those maps are inverses to each other
when restricted to R(n,n) and C* x R(n,-). Later we will show that R(n,n)
and R(n,-) are subvarieties (but not closed ones).

(2) Similarly R°(n) = C x R(n,-) by sending (f,g) to (g%,(f,g - Z—‘;f))
where g = >°"  b;t"~". Note that by here could possibly be zero.

In what follows, we will call the maximal dimension (or simply, dimension)
of a variety X to be the maximum among the dimensions of the irreducible
components of X.

Theorem 2. (1) The parameter space Rl kg I C™1xC™*! is isomorphic
—e
to

of dimension (3 k;) + 3.
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@Rm)= J[ R

k,l_[ k:i=n

(3) R°(n) 2C x H Ry | of the mazimal dimension n+4 ifn > 2
k,H ki=n,
ordifn=1.

Proof. The proof of statement (1) is proven in Lemma 2. The second statement
follows from Lemmas 2 and 3. For the proof of statement (3). Consider

a:(C*xC") xC"*! - Cx(C*xC") xC"
sending (a,b) to (by/ag,a,b — %(al, ...,a5)). It has the inverse §(¢,a,d) =
(a,d + ca). O

Note that the maximal dimension of R(n,m) is (n/m) + m + 3, and the
maximal dimension of R(n,n) is n + 4, and the maximal dimension of R(n,-)
isn+ 3.

Example 1.
R(8,8) = C*xR(,")
= Cx(CixC[JCaxCoxC[]CaxCa]]Cs) x R(L,),
R(8,4) = (CoxCaxCa]]C2xCy)xR(L,"),
R°B) = Cx(CaxC[JCaxCexCr[[CaxCi]]Cs) xRA,").
Note that R C Mor(C!, C?) has an action by Aff(C?) = GL2(C)xC? induced
from its action of affine automorphisms of the target C2. Since Aff(C?) is a

connected algebraic group and R° is a disjoint union of components of types,
we obtain the following definition.

Definition 5. An element of Ry, is called a parametrized affine embedding of
line of type k. In general we define the type of a closed parametrized affine
embedding of the line Al to the affine plane AZ after choosing appropriate
affine coordinates of Al and A2.

3. Applications
3.1. Parameter spaces of (unparametrized affine) embeddings of line
Given ¢(t) : C! — C?, consider its unique projectivization @:
p(t):Ct — C?
N N
g: Pt — P
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In terms of homogeneous coordinates of P!, the projectivization @ can be writ-
ten as

o([t : s])
= lapt" +ait" I+ 4 aps™ bot™ s T 4+ bit™ LT 4 4 bys™ 8™,

where ¢(t) = (aot™ + a1t™ 1 + -+ + an, bot™ + b1t 4o+ byy).

This rational projective curve of degree n meets the line at infinity exactly
at one point, which is [ap : b : 0] if n =m, [1: 0: 0] if n > m. It is obvious
that this point is the unique singular point of the given curve, if there is any.
Moreover the line [, at infinity is a unique tangent line at this singular point
of the curve. The intersection multiplicity C - I, is n. Let us denote that
cuspidal singularity of plane curves defined to be irreducible singular point.
Also unicuspidal curve meant to be a curve having only one singular point.

Definition 6. Denote by M(n) C P(H°(P?,O(n)) the space of unicuspidal
rational curves of degree n with maximal tangent line.

Example 2 ([8]). There is a rational plane curve with one cusp and the unique
tangent line at the cuspidal point.
In P2, consider the plane curve C defined by the equation
(2 —yz)? —2¢® = 0.
By a parametrization, we see that it is a rational curve having only one singular
point (0,0,1) with a unique tangent line:
r=tt*-1), y=(t*-1)7? z=1.
However the curve C'\ (0,0,1) is not isomorphic to C: Otherwise, there is a

regular map ¢ : P!\ {£1} — C C P!. Now considering the degree of the
extension ¢ : P! — P!, we obtain a contradiction.

Example 3. There is a rational unicuspidal quintic not having maximal tan-
gent line [6, 20]. The equation is the following:
(y —2*)(y — «® — 2ey) +y° = 0.

The affine plane curve given by the parametrization ¢(t) : C* — C? has the

defining equation
h(x,y) = Rest(f(t) - Z, g(t) - y) € IPHO(IP27 O]lﬂ(n))’
where Res;(f(t) — z,g(t) — y) is the resultant of f(t) — x and g(t) — y with
respect to t (c.f. Theorem 0.4 of [19]). Define A(n,m) by
A(n,m) = {h(z,y) = Res:(f(t) — z,9(t) — y)|(f,9) € R(n,m)},

which is the locus of the curves corresponding to R(n,m). We also define A}
to be the locus corresponding to Rj,. The locus A(n,m) is viewed as a subset
of PHO(P?, Op2(n)). Let My be the subset of M(n) consisting of those that
can be transformed to elements of A, by an automorphism of P2.
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Theorem 3. Each component My is a rational variety of dimension 4+ > k;
forn > 3.

Proof. Note that there is a fibration 7 : My — F(3) where F(3) is a flag
manifold and 7 assigns to a curve the flag of its singular point and the tangent
line at the singular point. The fibration has a rational section by the following
construction. Near the flag

((0,1,0)),((0,1,0),(1,0,0)))
of a point in F(3), there is an affine chart of (@, 3,7) € C?® parametrizing flags

(2, 1,0), (e, 1, 8),(1,0,7))). Pick any f(,y,2) € &, then f(z—a,y,z—7yz+
(ay — B)y) defines a rational section. Thus My is a rational variety. a

Corollary 1. A(n) = [], Ak is a quasi projective subvariety, and each com-
ponent Ay is a rational variety of dimension 2+ > k; forn > 2.

Example 4. Note that A(1) is P? minus one point. In general A, is an affine
bundle over P! with fiber C* x C" for n > 2.

3.2. The degree of A(n)

Lemma 4. Let n be an nonnegative integer. The lattice volume (c.f. [7]) of
the convez hull of the exponents of

k k k k
1,31 07-7'717171’!/ 1,-’32,-’1?2:9 27' <y Ty Ty
in Z"t is S o ki if k; are nonnegative integers not vanishing simultaneously.

Proof. When n = 0, it is clear. Assume that n > 0. By the Kouchnirenko
theorem [16], it is equal to the number N of common zeros of generic n + 2
equations ) a,x“ = 0, where w runs over all exponents in the set of monomials
above.

Note that the equations can be rewritten as Az = 0, where

transpose
r=(1,21,...,2,) 2P

and the entries a;; of the matrix A satisfies ai; € C+ Cy* ifn >3 > 0. By
taking the determinant of A, we conclude that the number N is less than or
equal to the degree of the determinant of A in y. Thus N < 37" | k;. However
we can achieve the upper bound by simply taking A as the maximal cyclic form

y 0 0 .- 0 -1
-1 y* 0 0 0
0 -1 ykz A 0
0 -1 ykn O

Theorem 4. The degree of (the mazimal dimension component of) A(n) is

n!n2+1) - 1.
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Proof. Since we have

Cx A, = {Zai(y —Az)""t —z2 € P(H°(P2,0(n)) |a € Cy, ) € c} ,

i=0
it is enough to find the degree of the closure of the image

b€y~ BT
defined by sending (ao, . . ., an, A) to (ag, agA, . .., agA™, a1, a1\, ..., A" 1, ..,
Un_2, Qp_2A, an—2)\27 Gn-1, Q1A — 1, an)'

Let 7 be the composition 7’ o A of the affine transformation

A(zo, . . S EN,ZN41) (205+ .1 28 — ZN41,ZN+1)

of PN*! and the projection of PN*1 to PV centered at (0,...,0,1) along the
subspace P(CV x {0}). Consider

¢ . ((C*)n+2 N ]P)N

sending (ag,...,an,A) to (ag, aoA,..., aA”, a1, a1, ..., A"~ ..., Gp_2,
apn_2A, an—2)‘27 Op—1, Gn_1A, Qp, 1)

Note that 1 is defined by monomials and ¢ = 7 0 ¢». Now applying Lemma 4,
one notes that the degree of the closure of Ims is % Since this variety is
defined by the obvious quadratic equations, it is easy to check that the center
(0,...,0,1,0,1) is a nonsingular point, which, together with the injectivity of

¢, implies that the degree of 7 o Im1) is one less than the degree of Imap. O

Another Proof of Theorem 4. Denote the general hyperplane P(H®(P?, Op: (n))
by H;. To compute the intersection number

Hy - Hpyo - A(n),

we may assume that all the intersection points occur in
n
Cx A, = {Zai(y —Az)" —z e P(HY(P?,0(n))|la € Cp, X € C} .
=0

The equations can be expressed by a matrix equation Ab = 0 where A has
entries a;; that are polynomials in A with degree k; and j = 0,1,...,n + 1.
Note that the first column entries a;y are constants, and b is the transpose of

(1,b1, ey bn+1) = (l,an,an_l, . .,ao).

There is one more constraint that the constant term a;o equals the negative of
the leading coefficient of a;;. By considering the determinant of A, it is clear
that there are at most (Z?:Jro1 ki) — 1 solutions. However one can achieve the
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upper bound by taking the specialization of A to

1 =X 0 ... 0 -1
0 Ml 0> 0 -1
0 -1 A= ... 0
0 ~1 Mot [ W]

The above theorem combined with Kleiman’s transversality theorem [14, 5]
applied to (P2)"*2 with the group action (GL3(C))"*? implies the following.

Corollary 2. Letn > 2. There are exactly ("—("5“51 — 1) distinct plane curves
in A(n), passing through general dimA(n) points in P2.

3.3. The degree of M(3)
Corollary 3 ([15, 2]). Let M(3) be the space of cuspidal cubic curves. Then
the deg M(3) = 24.

Let (f(t),g(t)) be a smooth polynomial parametrization of a cubic curve.
Then its general form must be (agt® + a1t? + a2t + a3,t). And their defining
equations are parametrized as follows:

aoy® + a1y® + a2y + as = = = aoy® + a1y%2 + azyz® + az2® = z2°.
The defining equations near singular point [1 : 0 : 0] are
a0y’ + a19°z + agyz® + a3z® — 22 = f(y, 2).
Now we consider PGL(3,C) action on them. The local action changes the
singular point and the unique singular tangent:
fy,2) = fly+b1, Ay + 2+ ba).
Hence we have local parametrization of cuspidal cubics as follows:
ao(y + b1)° + a1 (y + b1)2(My + z 4 b2) + a2y + b1) Oy + 2 + b2)?
+a3(Ay + 2+ b2)® — Ay + 2+ b2)® =0.
We can use “deg lex order” y > z with descending order.
(ap + a1 X + a2)? + a3\3)y®
+(ay + 2a2) + 3a32\%)y’2
+(ag + 3az\)yz?
+a3z3
+(3agb1 + a1bs + 2a1b1 X + 2a2b2 A + a2b1 A2 + 3azba A% — A?)y?
+(2a1b1 + 2a2b2 + 2a2b1 X + 6agbo X — 2X)yz
+(a2b1 + 3asbs — 1)22
+(3agb? + a1b? X + 2a1b1bs + agh3 + 2azbiba) + 3azb3A — 2b20)y
+(a1b? + 2a2b1bs + 3azb3 — 2b2)z
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+(agh3 + a1b3by + agb1b2 + ash3 — b2).
Define polynomials P; ;(ao, a1, az,as, b1, ba, A) by

f(y+b1,)\y+2+b2) = Z Pi,j(a'07a'17a'27a37b17b27)‘)yizj'
i+j<3

Hence the projective closure, Im{®), of the image of the map
d:C*xCl -Cccp?

is the parameter space of cuspidal cubic curves in CP2. It is an explicit rational
parametrization of the parameter space of cuspidal cubic curves.

An explicit computation with the computer algebra package Singular [10]
shows that the degree of Im(®) is 24. Moreover another numerical invariant
which counts the number of cuspidal cubics with a fixed singular point can be
computed by computing the degree of the subvariety Im(®(b, = by = 0)). A
computation shows that this number is 2. We also have checked the degree of
the subvariety Im(®(b; = 0). This number counts the cuspidal cubics whose
singular points lie on a fixed line. Qur computation shows it is 12.

Remark 2. (1) These numerical invariants have been known for years [18,
15, 2, 11, 12}, going all the way back to a very old Enriques’ formula.
(2) After writing up this paper, we learned that the degree of .A(d) had
been independently obtained in a recent paper [13] as an example. The
approaches, however, appear to be substantially different.
(3) Note that our method produces not only the degree of the parameter
space A(d) but also an explicit parametrization of A(d) itself.
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