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THE SPACE OF FOURIER HYPERFUNCTIONS AS
AN INDUCTIVE LIMIT OF HILBERT SPACES

KwaNG WHoI Kim

ABSTRACT. We research properties of the space of measurable fun-
ctions square integrable with weight exp(2v|z|), and those of the
space of Fourier hyperfunctions. Also we show that the several em-
bedding theorems hold true, and that the Fourier-Lapace operator
is an isomorphism of the space of strongly decreasing Fourier hy-
perfunctions onto the space of analytic functions extended to any
strip in C™ which are estimated with the aid of a special exponential
function exp(p|z|).

§0. Introduction

We introducted the following in [5]:

Let F,, be the space of continuously differentiable functions ¢(z)
for which the norm

|0%p(x)| exp(v|z|)
h—lelg!

(0.1) l¢l(hyy = sup , h>0, veR
z€ER™

is finite. Then the spaces F{; ) the (continuous) embeddings
(0.2) Fihyy CFiryry, R2H >0, v >0/
take place.
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By virtue of (0.2), we can define the spaces G and M with the aid of
the operations of projective and inductive limits:

G =) Fhw)

(0.3) v
M= () Fn—c0)s Fin—c0y = |J Fity-
h>0 v

Let the space G’ be a space of continuous linear functionals on G.
Since the embeddings (0.2) induce the adjoint embeddings

(0.4) (F(h/7l,/))l C (F(h,,,)),, h> B > 0, v> l/l,

The space G’ regarded as a vector space coincides with the union of
(F (h,u))l:

(0.5) ¢ = JFunun)

h,v

The right-hand space can be equipped with the topology of inductive
limit, and in the left-hand space we can introduce the topology of the
strong conjugate space of G.

Note that G’ is reflexive and regular inductive limit, which implies the
coincidence of the two above-mentioned topologies in G’. The regularity
of G’ implies that for each bounded set B C G’ there are real numbers
h and v such that B C (Fip,,)).

In this paper, making use of the same method as in [3], we research
the structure of an inductive limit of Hilbert spaces for the space of
Fourier hyperfunctions introduced in [5].

In §2, we research properties of the reflexive Hilbert space H(,) of
measurable functions square integrable with weight exp(2v|z|) (Propo-
sition 2.1). We show that the space G is dense in H = H.o> (Theorem
2.3). Since the Fourier operator ¥ : G’ — G’ is one-to-one and trans-
forms the subset G C G’ into itself and G C H.,» C G’, we introduce
the space H(®), which is the image of H.,~ under the operator F~1.

In §3, §4, we introduce the space H(<83>, which consists of Fourier
hyperfunctions in H(~>) such that §s y(D)f € Heps, 0 < v < N for
pseudodifferential operator 5 (D) with symbol §, v (¢) = exp(s > p_;
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(N2+¢2)Y2),|Im¢| < N. And we research properties of Fourier hyper-
functions in this spaces (Proposition 3.1, 3.2 and 4.3). Also in Propo-
sition 3.3, 4.1 and 4.2 we show the following embedding theorems: For
h, v >0,
Flh,+vt+e) C H(<h:é2) C Flh/4,40), €> 0.
’ v> s EV)

Lastly, we introduce the spaces G, O M, O’ and G’ endowed with
topologies of projective and injective limits of the Hibert spaces{ H (<s,2>}
and show that the Fourier-Lapace transform ¥ : O’ — M is an isomor-
phism of vector spaces (Proposition 4.4).

§1. Preliminaries

As a norm in R? (in C?

z?

resp.) we take |z| = 37 |z;| ( |2] =
35— |2jl, resp.), and the volume element dz = dz1 - - - dzy, is fixed. Put
D=(Dy,...,Dyn); Dy =170k, O =0/0zk, k=1,...,n, i= V-1

We denote by Rf the dual space of R}. Let § = (&1,...,&n) be
coordinates in RY such that the duality is expressed by the bilinear form
< xa§ >= .’17161 + o +xn€n If/B = (ﬂl)""ﬂn) and Y= (71"" 7’771)
are multi-indices of nonnegative integers, then |3| = 81 + -+ + Bn, B+
v= (B 7, 2 Bn ), Bl =Bl B, €8 =65 .6,P DP =
DA ...DB and 88 = 9% ... 9Pn,

Let E; and F; be topological vector spaces embedded in a topological
space E. Denote by E; () E2 and E; + E2 the subspace of elements of Ey
being contained in E5 and the space of sums @1 + @2, ©1 € F1, g € Eo,
respectively. The topologies of E; and F» induce topologies in E; [ E2
and Ey + E5. In case F; and E, are Banach spaces, the Banach norm

o, B () Eal = |, Bal + |g, B
and the norm

[, By + Ep| = inf  (|¢1, Ex| + |2, Eal)
P1t+e2=¢
are defined on E; ) E2 and E; + Es, respectively.
Let I denote an open unit cube in R™ :

I={w=(wy,...,wn) ER" | Jwj| <1,5=1,...,n}

and let I®), k = 1,...,2", be the vertices of the cube, i.e., the various
vector whose coordinates assume the values £1.

We introduce some theorems and propositions to need in this paper
which are founded in [5].
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THEOREM 1.1. f(x) € Fi,,y if and only if f(x) can be continued
holomorpically to the tube domain Dy = {z + yi € C"| |y;| < h,j =
1,2,--- ,n} such that

|f(z +yi)| < Cexp(—vlz]).

Let v > 0. Let F(*) denote the Banach space of functions ()
holomorphic in the tube domain D, and having a finite norm

(1.1) %% = sup exp(s|¢))H(Q)]-
¢eD,

PROPOSITION 1.2. The map F, .y — Fv) . f(z) - f(z+yi) isa
topological isomorphism and there are constants Cy, Cy > 0 such that

C1lf1P) < | flehuy < Cal F1¥).

REMARK. It follows from Proposition 1.2 that

(1.2) M = ] Fth=e0),
h>0
ProposiTION 1.3. For h,v > 0 we have

2"
(1.3) Fihoy = ﬂ Fipp10

k=1

and (0.1) is equivalent to the natural norm of the right-hand space of
(1.3):

2n
(0.1') Z @l ih,preo)-
k=1

ProPoOSITION 1.4.

(i) M is a commutative algebra relative to multiplication.
(ii) G is an ideal in M, i.e., the operation of multiplication is defined:

M x G — G ((a(z),¥(z)) — a(z)y(z))

and this operator is continuous.
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THEOREM 1.5. The spaces G and G’ are Fourier self-dual:

(1.4) F5G=¢6, 3¢ =¢'.

THEOREM 1.6. If ¢ € Fiy,,y, h,v > 0, then for any ( € D,, the
absolutely convergent Fourier-Laplace integral is defined:

75 pla) = 9(0) = (202 [ exp(-i < 2,¢ >)pla)da,
and Parseval’s inequalities hold:

(1.5) C1l@| ™™ < lolinwy < Calgp|™.

THEOREM 1.7. The Fourier-Laplace transform operator determines

an isomorphism
FG= (| F®M.

h,v>0

REMARK. Regarded all function in M (G resp.) as an entire function
estimated with a special exponential function exp(u|z|)(with any expo-
nential function exp(u|z|) resp.), G is an ideal in M, i.e., each element
in M is a multiplier on G.

By virtue of (0.2), we can define the spaces O with the aid of the
operations of projective and inductive limits:

(1.6) 0= UF(oo,V)a Floop) = ﬂ Fin)
v h>0

The spaces O consists of analytic functions extended to C™ whose
functions increase, for |Rez| — oo, not stronger than an exponential
function exp(u|Rez|).

REMARK. Since exp(i Y r_, z2) belnogs to M, but does not belong
to O, O is a proper subspace of M.

If f € Fhuy, 9 € Fla,—v4e)s h, €> 0, then the bilinear form

(1.7) (f.0) = / f(@)g(a)de



666 Kwang Whoi Kim

is defined and depends continuously on f and g (in the corresponding
topologies). Hence,

(1.8) G C Fihyy C (Fh,-v4e) C G’
and the embeddings

(1.9) Gcocg'.

take place. '

Denote by O the space of continuous linear functionals on 0. O’
regarded as a vector space can be identified with the projective limit
of the conjugate spaces (F(,,))’. The latter, when treated as vector
spaces, are identified with the inductive limit | J, (F(x,.y)". Thus,

(1.10) O =) (UFnn))
v h

The space O are called the space of strongly decreasing Fourier hy-
perfunctions.

§2. The spaces H.,~

Let Heys (v € R) denote the space of measurable functions square
integrable with weight exp(2v|z|). The corresponding norm is written

(2.1) 1fll<ws = (s £ <u>)" = | exp(vla]) fl| -

Then we see that
G C Fihute) C Heps C (F(h,—u+e))/ cg,e>0.

REMARK. If exp(v|z|) in (2.1) is replaced by 6, n(z) = exp(vd>_r_;
(N2 +122)?), we note that (2.1) is equivalent to the norm |6, v (z)f| Lz

Let H.os = H. Then the mapping f — fexp(v|z|) determines an
isometric isomorphism of H.,~ and H. It follows that H._,~ and the
Banach conjugate space of H.,~ are isometrically isomorphic, i.e.,
(2.2) (H<u>)l =Hc_p>.

Consequently, H.,~ is a reflexive Banach space.

We can define in H.,~ the scalar product

(23) (f,9) <> = / exp(2v|z)) f (2)9(z)dx

to which the norm (2.1) corresponds. In other words, H, is a reflexive
Hilbert space.
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PROPOSITION 2.1.
(i) For v > 0 we have

2’”
(2.4) Heys = ﬂ Hiypoo

k=1

and (2.1) is equivalent to the natural norm

2"1
(2.5) D 1 llpzeoy
k=1

of the right-hand space of (2.4).
(') For v > 0 the space H.,> consists of those and only those
elements of the intersection {\p.,; Hir) for which the norm

(2.1) Ifll<v> = sup || fllmy
Tevl
is finite.
(ii) For v < 0 we have
2’!1.
(2.6) Heys =Y Hprep,
k=1

and (2.1) is equivalent to the norm

2.7 i f K,. vI{=)]-
( ) f=f11—£l~~~+fn;”f ||[ 1(%))

PRrOOF. (i) It is obvious that
exp(v|z;|) < exp(vz;) + exp(—vz;) < 2exp(v|z;|).

Multiplying these inequalities for s = 1,... ,n we find

2”
(2.8) exp(v|z|) < Zexp(< vI® z >) < 2™ exp(vlzl),

k=1

which implies that (2.1) and (2.5) are equivalent for v > 0.
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(i) Let T’ = (w1,... ,wy) and let |w;| < v,5 = 1,... ,n. Multiplying
the inequalities

(2.9) exp(w;z;) < exp(vz;) + exp(—vaz;) < 2exp(vlz;()
fori=1,...,n. we obtain
2",
(2.10) exp(< [z >) < Zexp(< vI®) g >) < on exp(v|z|),
=1
whence
277.

Wiley < DM lpreoy < 27 [ fll<ws-
Kk=1

Conversely, let ’|[f||,) < co. Given z € R", we take I = (e1p, ... ,€p),
p < v, in (2.10), where ¢; = 1 and the sign of ¢; coincides with that of
z;. Then we derive

( / exp(2pla]) £2dz) 2 < | fllo)

for all p < v. By continuity, this inequality is retained for p = v as well.
(ii) By virtue of the obvious inequality

exp(vlz]) < exp(< T,z >), Vo <0, T = (w1,... ,wn), |w;] <[vl,

the spaces Hj, o), K=1,2,...,2" and, consequently, their linear hull

as well are embedded in H(,,) And if ¢ = Z -1 QRETIQNS Hi, 1o,
then, by triangle inequality,

2n
9l <> < > IS reoy-

k=1

Taking the infimum in the right-hand side over all the representation
P = Zn—*l ¢*), we prove that the right-hand side space of (2.6) is
embedded into the left-hand side space.
To prove the opposite embedding we construct a system of functions
X, k=1,...,2", x" >0, possessing the following properties:

(a) 2, )z )=1
(b) If ¥ € Heys, then Wy € H[VM], and [|x" (@)Yl re0; <
const||y]|<v>-
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The embedding of the left-hand space of (2.6) into the right-hand side
space is a trivial consequence of (a) and (b).

If zg,...,25, > 0 and z5,,,..., 2, < 0, let (e,...,€,) be the
coordinates of a vertex 1), where ¢;, = --- = ¢;, = 1 and €igpy = ° =
€i, = —-. Then we put

n

k
(2.11) X (@) = [Jexp(=a3) T (1—exp(—22)).
=1 l

=k+1

It is obvious that (a) is fulfilled. Since

k n
<I®W g >= Zmil — Z z;, = |z|,

=1 I=k+1
it is clear that (b) holds, whence the proposition is proved. O
For 8, n(¢) = exp(s Yoy (N? + (2)Y?), |Im(x| < v < N we denote

by H (<s;’ > the space of functions 1(¢) holomorphic in the tube domain
D, and possessing a finite norm

(212) [IIG7 = sup ([ [62s,n (€ +aw)| (€ + iw)[PdE) /2.

lwil<v,i=1,...,n
Note that the Fourier-Laplace operator is defined in the spaces H.,~
forany ( € D, if v > 0.
THEOREM 2.2. The Fourier-Laplace operator determines the isomor-
phism
(2.13) §H<V> = H<V>

under which the norm (2.1") goes into (2.12) (for s = 0).
THEOREM 2.3. G is dense in H.

PROOF. First of all, we show that G is dense in F,, o) ] H relative

to the norm || - ||zz.
Let f € Fio,0)(1H. Then we see that f(z)exp(—j~ 'Y r_,22) €G.
It follows from the Lebesgue’s dominated convergence theorem that

Jim || f(@) exp(=51 3 a}) = f(2)] =0.
k=1
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Therefore it follows.
Next, we show that Fi,, o) H is dense in H.

Let f € H, and let ¢ (z) = 772 " exp(— Y p_,(zx/€)%)). Then
we obtain from Young’s inequality that ||f * ¢c|| < ||f||. We can easily
show from Theorem 1.1 that f.(z) = f * () belongs to Fi o) [ H.

Since CJ is dense in H, for every 1 > 0 there exists a function f € C§
such that ||f — f|| < n/2. Therefore we obtain

I1fe = Il
< e = Fell +1fe = FI+1F = I
<NF= A+ 1= FI+11F = £

<n+lf. - fil
On the other hand, we have
(@) - f(@)]
e [ 1@ —1) - fo)lexpl(= Y- (ts/0)d
k=1
= g /2 flx—t)— f xp{— t 2\ dt
¢ /Wzﬁkf( ) — F(z)] expl Q e/6)
-n/2_ —n Flmm 4+ __ F _ - 2
a2 /| oo =0 = F@) exp(= 3 (/e
< 92 f xp(— n ty/€)2)dt
< € sgplf(w)l wzﬁe p( ;( k/€)°)
+ sup |f(@—1) - f@))

[trl<Ve

Since f(z) is uniformly continuous, fe— f — 0 uniformly, so || fe— f]| = 0
as € — 04. Therefore it follows, and hence proves the theorem.

REMARK. The operator of multiplication by

n
exp(~ 3 (N? + a)1/%)
k=1
generates an isomorphism of H and H.,> under which the spaces G,
Flo,0) () H is preserved. Since G is dense in H, it is dense in Hc,> as
well, and H.,~ can be regarded as the completion of G with respect to

I ll<ws-
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§3. The sructure of a countably Hilbert space in G

Note that G C H.y» C G'. Then it follows from Theorem 1.5 that
GCTF 'Hees C G

Let
H(S) - 9:~1H<3>.

Since the composifion of F and F~! is an identity operator in G/, we
have
?H(s) = H<s> .

We introduce the norm

A1) = 15 fll<o>

in the space H(®). Thus, H(®) consists of those functions f € G’, pos-
sessing Fourier transforms, which are square summable and whose norm

(1 £11¢) is finite.

By pseudodifferential operators (PDO) in G are meant operators hav-
ing the form

B @D = @0 [ expli < a.¢ >)al@p(d
Such an operator can be written as a composition of three operators:

(32) (a(D)p)(z) = T2 ,a(6)Fumeip.

The function a(¢) is called the symbol of the operator. We now con-
sider the case ¢ € G and take, as symbols a(£), functions belonging to
M. Then, by virtue of Proposition 1.4 (ii) and Theorem 1.5, (3.2) is a
composition of three continuous operators transforming G into itself and
hence is a continuous operator from G into G.

If f € G’ and a(€) € M, then we define by a(D)f the functional

(3.3) (a(D)f,¢) = (f,a(=D)yp), Yy € G.

Fix v > 0. Each function a(¢) € F'~°) is a multiplier on the space
F('%) ' <y and for ¢ € Floo,17), we can define the PDO

a(D)p = (2r)~"/? /exp(z' <&+l z >)a(f+iD)@(E +:i0)dE, T e V1.
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Then Theorem 1.1 and 1.6 imply that the operator
a(D) : Floopy = Floowy, 0 <V <, a(¢) € F=)

is continuous.
We now include the zeroth space H<ys, v > 0, in the scale {H (<S,2>
generated with respect to PDO. To this end we define the symbols

n

(3.4) So,n(C) = exp(s Y _(N? + ¢)'/?).
k=1
Note that if s > 0, then for |[Im(;| < v < N,
(3.5) Chexp(s/V2I¢) < [85,n(Q)] < Czexp(sC]).
We put

(3.6) HY) ={fe H-*)| §, y(D)f € Heps, 0<v < N}
and equip this space with the norm

(3.7) 1F1S)s = 16sn(D)fll<vs, 0 < v < N.

We can introduce in this space a Hilbert scalar product (to which the
norm (3.7) corresponds):

(3.8) (£,9))s = (6s v (D) f, 65 n(D)g)<v>,0 < v < N.

From (3.6) and Proposition 2.1 we can readily derive other equivalent

definitions of the space H. (<33>. We have the following

PROPOSITION 3.1. Let v > 0. Then the conditions below are equiv-
alent for the Fourier hyperfunctions f € H(~=%°).

(i) ds,n(D)f € Heps.
(i,) f = 5—s,N(D)g: g€ H<l/>'
.. 2n s
(ii) £ € Moy Hipeoy
(i) f € Nreur H[(lf]), and the norm
3 71 / (s) — (s)
3. ) ||f||<u> sup “f”[r]
T'evl
is finite.

(iil) The Fourier transform f € H._o is continued holomorphically
to the cube domain D, and belongs to H é;’ Z.
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The condition (iii) implies that

(3.9) FHE), =HSY.

Indeed, if feH (<S,2>, then we have

I

11715 = sup | £1) = sup | exp(< z,T >)ds,n(D)f|
Tevl T'evi

sup [|8s,n (£ + i0) f(€ +4T)|| = ||f||(<s'§>
Tevi

PROPOSITION 3.2. For s > s, v > v >0, we have

(3.10) HE) c HY)

<wv'>"
ie, {H (<s,2>} is a scale of Banach (Hilbert) spaces.

Proor. If f € H(<s,2>, then it follows from Proposition 3.1 (i’) that
f=6_sn(D)g, g € Hcp>. Therefore we have

IF1IE). = |l exp(/|2])6y v (D) f|| = || exp(v[2])8_ (s sy, v (D)9l

2n
< Z “ exp(< Z, V,I(K) >)6—(s—s’),N(D)g“
k=1
2TL
= Y 10 (emeryw (€ + i TN (€ + i TW)]|
k=1
2n 2n
< CY g€+ 1W)| = C Y llexp(< z, /' T® >)g(x)|
k=1 k=1

< 2"ClIf1%)>.

We shall show that this scale is equivalent to Hdélder’s scale.

PROPOSITION 3.3. For every h,v > 0 we have the embeddings

(3.11) F(h’,,+6) C H(<hl,/>2) C F(h/4’,,), € > 0.
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PROOF. Let f € F4 ,4.). Then we have

IF1E2 = llexp(vel)on/o,n (D)

< 2 || exp(< z,vI™) >)84 2 N (D) £l

= i||6h/2,N(5+M<F~>>f<§+wf<“>>||

< oi lexp(h/2l¢ + I f(g +ivI®)]
k=1

<oy y o B e fe + i)
=

CZZ “lexp(< 2,v1¢) >)D2/|

k=1 «

< czlz B2 exp(ofa) Do

2“02

This proves the left-hand embedding of (3.11).

To prove the right-hand embedding of (3.11), from Proposition 1.3
and 3.1 (ii) it suffices to show sobolev’s embedding theorem written in
the form

(fl(n vroh 1ol exp(—elzl)].

h
(3.12) H, [(u1)<~>] C Fln/2,prco)-

Let f € H(IZ)(K)]. Then we have

/ BT (€ 4+ i I®) e

- / |8h, 5 (& + I f(€ + ivI®) (& + awI™N)6_p N (€ + ivI™)|dE

< N0nw (€ + i) (€ + i TN (E +ivI D)6y n (€ +ivI))|
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= || exp(< z, vI®) >)8, N (D) FIII(€ + ivI™)T8_p N (€ + ivI®))]
< C’Y!(h/Q)‘M”f”fB(N) | exp(—(v2 — 1)h/2|€ + ivI®))]

< O/ AP,

Since
Df(z) = (2m)~"/? / expli < @,& + wI® >)DVF(E +ivI®)de,

we obtain
n h
|f|[h/2,uI(")] < (2m)” /2C/||fH( ;(n)

From (3.11) it follows automatically that

(3.13) G= ﬂH@

§4. The space G’ as an inductive limit of Hilbert spaces

For v > 0 we define H i__s,z>, s € R as the Banach conjugate space of
H (<33> and introduce in it the norm of a conjugate space:

(4.1) 1A1S2), = sup{|(f, o)l lgls)s < 1)

It follows from (2.2) that (4.1) is compatible with (2.1) for s = 0. Since

G is dense in H (<53>, the functionals belonging to H_ 5 3> can be regarded

as elements of G'.
Note that HL’;@ C Heys and Fip iy C Ho_ys. Therefore each
function f € F(j _y4¢), € > 0, belongs to H(< h,,/>2)

PROPOSITION 4.1. For h,v > 0 we have

h/2
(4.2) Fp—vse) C HLY
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PROOF. Let f € Fij,_y1) and g € Hi_l,};ﬂ). Then it follows from
Proposition 3.1 (i') that g = 0n/5 N (D)go, go € Heyv>. We construct
a system of functions x(*), k = 1,...,2", x) > 0, possessing the
following properties:

(8) Tasy X (@) =1
(b) If f € Fin,—v4e), then x®) f € Fy, 10100, and

X5 flin(corereo) < const|fl(n—vte)-

If ¢5,,...,255 > 0 and 24,,,,...,2;, < 0, let (e1,...,€,) be the
coordinates of a vertex I(*), where €, = =¢€, =land ¢,,, =--- =
€;, = —1. Then we put

n

k
X" (@) = [Texp(=a}) T (1 - exp(==})).
=1

I=k+1

It is obvious that (a) is fulfilled.
Since < I® z >= Zf=1 Ty — D ki1 i, = ||, it follows from the
proof of Theorem 1.1 that (b) holds. Then we have

I(f, 9)l
271-
> I £, 9)l
k=1

on
= > l(exp(~vle)8h2,n (D)x™ f, exp(v]z])go)|

k=1

IA

2’!1 .
< Y llexp(< —vI™, 2 >)852,5 (D)X ™ [l exp(vle|)gol
k=1
on e
. . . *® —h
< S 16k 2w (€ — I )X f(€ — I |lgh Y
k=1
2n P N
< CY lexp(h/2le — i I®)x® f(& — i Il S
k=1
2’",
h/2)ledl TS e _
< 03 W e 1) X 6 — I ) g S
k=1 « .

2 (h/2)le " o) (<h/2)
< O35 P exp(< w1, 2 >)D (¢ ) (@) gl S

k=1 «
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211
(/2 o o
<CY Y L fli v renh™ Mol exp(~ela) gl S

k=1 «
~—h 2
< CNflh-viollall S,

whence it follows. O

Thus, we have

(4.3) G C Fipyre CHEMD c g'vhv >0,
where all the embeddings are dense.

PROPOSITION 4.2. For h,v > 0, we have

h
(4.4) HP2 € Flja—u).

PRrOOF. Let f € HI/Z . Since

D f(x)
= [ el < a6 ) Qg wy =~
Imj=w; X

=en ™ [ el <50 O n(OF O
we have
D% f(2)|
< (2m) "2 exp(ulz)||6_n e, MO 1 ~OFOI
< (2n)™/? exp(vlz) exp(— f!d)cali
x || exp(< @, Im¢ >)8n2.n(D)f ()]
< (2m)2al(=" )1l exp(uial) | exp

h,1 1 L (h/2)
23 (=35 = ZDIDIIILLE
< (2m)=2al(5) 1 exp(vla) | exp(~ Z(\}ﬁ—\—fg)ld)llllﬂlgﬁl,

whence it follows. O
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Since the spaces H (<33>, v > 0, form a scale, the spaces H (<__s,2> form

the dual scale, and we can consider the inductive limits H (<_,,°>°) , H (<__°§)>,

and endow them with the natural topology. By virtue of the reflexivity of

H SZ>, these limits are regular, and, according to the general properties
of regular inductive limits, we have the topological isomorphisms

)/ -
(4.5) (HSL) = HES),
(4.6) ¢ =|JHL.,

where the left-hand and right-hand spaces are equipped with topologies
of strong conjugate space and inductive limits, respectively.

In view of the duality (4.5), we can define PDO on H i__o,f; Let
a(¢) € FN:=%) and for N > v we put

(4.7) (a(D)f,9) = (f,a(~D)g), Vg € HSL.

On the dense subset G C H (<—_33> this definition is compatible with the
one stated in (3.4). Proposition 3.1 (i) and (2.2) imply the isomorphism

(4.8) S_sn(DYHC®), = Ho_ s

with the equality of norms :

(4.1) 1A1E2)5 = 160 (D) fll<mvs.
Proposition 2.1 (ii) and (4.8) imply the following
PROPOSITION 4.3. For v > 0 and any s € R we have

o
(4.9) Hi_—83> = Z:IH[(—T}('@)]’

and (4.1) is equivalent to the norm

. 271
. -s)
(417) PRI W 2 e
wk=1
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of the right-hand space of (4.9).
(3.11), (4.3) and Proposition 4.2 implies

o={JHEL, 0 =NHSY,

(4.10) .
M=HY ...

Denote by F(j)" > the space of holomorphic functions in the tube do-
main D, and having a finite norm

(4.11) Wl = sup |65, n(OIIF QI

¢eD,
It follows from Proposition 1.2 and (3.5) that if s > 0, then
(412)  Fug~FO) CEY> cFOsIVA R, s
and hence (1.2) implies that

(=00)’

(1.2 M=(FZZ

PROPOSITION 4.4. The following isomorphisms of vector spaces hold:
(4.13) FO' = M,

where J is a Fourier-Laplace operator.

ProOF. By (3.9) and (4.10) we obtain
r_ () _ <> _ <>
50' =UJgHS, =NUES™ =HZZ,
14 8 v S v

Hence, the proof of (4.13) reduces to the proof of the equivalence of the

scales {F(5y” } and {H, (<S;’ >} where v > 0. We shall prove the following.[]

PROPOSITION 4.5. For every v > 0, the embeddings

(4.14) - FGid CHEY” CFGY2y, Ve e >0,

take place.
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PrROOF. If N > v, then the operator of multiplication by the function
0r n(¢) generates the isomorphisms

FSy> = FE2, HEY> — HE ) (0 — 6 n ().

Hence, when proving (4.14) we can confine ourselves to the case of s > €.
The left-side inclusion in (4.14) is obvious. According to (3.9), (1.5),
(4.12) and Proposition 3.3,

H(<s;/> = fTrH(<sz2> CFFs2,.) C FWs/2) — F(E/U;)

This proves the proposition. |
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