• Title/Summary/Keyword: Elovich

Search Result 21, Processing Time 0.026 seconds

The Removal Kinetics of Mn and Co from the Contaminated Solutions by Various Calcium Carbonate Surfaces (다양한 방해석 표면에 대한 Mn과 Co 흡착 기작)

  • H., Yoon;Ko, K.S.;Kim, S.J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.219-222
    • /
    • 2004
  • Removal characteristics of Mn and Co was studied from the contaminated solutions via surface reaction with various calcium carbonate (calcite). Synthetic calcium carbonates which has different surface morphology as well as surface areas were prepared by a spontaneous precipitation method and used. Mn and Co removal behavior by the different solid surface demonstrate characteristic sorption behaviors depend on the type of calcite used, such as surface area or surface morphology. Calcium carbonate crystals (mostly calcite) which exhibit complicated surface morphology (c-type) shows strong sorption affinity for Mn and Co removal via sorption than on the a-type or b-type calcite crystals of less complicated surfaces. The applicability of two kinetic models, the pseudo-first-order kinetic equation and the Elovich kinetic model was examined on these sorption behavior. Elovich kinetic model was found more suitable to explain the very early stage adsorption kinetics, while the pseudo-first-order kinetic equation was successfully fitted for the adsorption kinetics after 50 hours.

  • PDF

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Field tolerance of pesticides in the strawberry and comparison of biological half-lives estimated from kinetic models (Kinetic models에 의한 딸기 중 농약의 생물학적 반감기 비교와 생산단계잔류허용기준 설정)

  • Park, Dong-Sik;Seong, Ki-Young;Choi, Kyu-Il;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • This study was conducted to determine the amounts of pesticide residues after treatment of criterion dose with 4 pesticides(tolclofos-m, folpet, procymidone, and triflumizole) under cultivated period and to compare the biological half-life of pesticides with 6 kinetic models(first, zero and second order kinetics, power function, elovich and parabolic model) and to establish proposed field tolerance using biological half-lives. Recovery of 4 pesticides form strawberry was ranged from 85.1 to 105.5%. For all of 4 pesticides, dissipation rate was over 73% at 5 days after application. Among 6 kinetic models, first order kinetic model (FO) was best fit to describe the relationship between residual pattern of pesticides and time. Therefore, half-lives were calculated by FO for establishing the field tolerance. These results showed that half-life should be calculated by comparative best fit kinetic model and field tolerance can help to prevent unacceptable agricultural products from marketing. It is good for both consumers and farmers having safe agricultural products and financial benefits, respectively.

Study on Adsorption Features of Arsenic onto Lepidocrocite (레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명)

  • Lee, Woo-Chun;Jeong, Hyeon-Su;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Systematic studies are performed for arsenic adsorption on synthesized lepidocrocite. The synthesized lepidocrocite with high surface area of $94.8\;g/m^2$ has shown that the point of zero charge(PZC) is 6.57 determined by potentiometric titration, suggestive of high capacity of arsenic removal. Results show that arsenite[As(III)] uptake by synthesized lepidocrocite is greater than that of arsenate[As(V)] at pH $2{\sim}12$, indicating that the lepidocrocite has high affinity toward arsenite rather than arsenate. Adsorption of arsenate decreases with increasing pH from 2 to 12, whereas arsenite sorption increases until pH 8.0, and then decreases dramatically with increasing pH, suggesting that changes in surface charge of the lepidocrocite as a function of pH playa important role in aresinc uptake by the lepidocrocite. Upon kinetic experiments, our results demonstrate that both arsenite and arsenate sorption on the lepidocrocite increases rapidly for the first 4 h followed by little changes during the duration of the experiment, showing that adsorption plays a key role in aresenic uptake by the lepidocrocite. Our results also show that power function and elovich models are the best fit for the adsorption kinetics of arsenite and aesenate on the lepidocrocite.

Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite

  • Fil, Baybars Ali;Ozmetin, Cengiz;Korkmaz, Mustafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3184-3190
    • /
    • 2012
  • Color impurity in industrial effluents pose a significant risk to human health and the environment, so much effort has been expended to degrade them using various methods, including the use of clay minerals as adsorbent. The purpose of this study was to advance understanding of the mechanisms for the removal of methylene blue (MB) from aqueous solutions onto montmorillonite as an adsorbent. Preliminary experiments showed that montmorillonite was effective for this purpose and adsorption equilibrium could be reached in about 24 h. Adsorption capacity of the clay decreased with increase in temperature and ionic strength, and increased with in pH. The fitness of equilibrium data to common isotherm equations such as the Langmuir, Freundlich, Elovich, Temkin and Dubinin-Radushkevich were tested. The Langmuir equation fitted to equilibrium data better than all tested isotherm models. Thermodynamic activation parameters such as ${\Delta}G^0$, ${\Delta}S^0$ and ${\Delta}H^0$ were also calculated and results were evaluated. As result montmorillonite clay was found as effective low cost adsorbent for removal of cationic dyes from waste waters.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Heavy metals leaching behavior and ecological risks in water and wastewater treatment sludges

  • Wuana, Raymond A.;Eneji, Ishaq S.;Ugwu, Ezekiel C.
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.281-299
    • /
    • 2017
  • Single (0.005 M DTPA), sequential (six-step) and kinetic (0.05 M EDTA) extractions were performed to assess Cd, Cr, Cu, Ni, Pb, and Zn mobilization and their potential ecological risks in Abuja (Nigeria) water (WTS) and wastewater (WWTS) treatment sludges. Total metal levels (mg/kg) in WTS and WWTS, respectively were: Cd(3.67 and 5.03), Cr(5.70 and 9.03), Cu(183.59 and 231.53), Ni(1.33 and 3.23), Pb(13.43 and 17.87), Zn(243.45 and 421.29). DTPA furnished metal extraction yields (%) in WTS and WWTS, respectively as: Cd(11 and 6), Cr (15 and 7), Cu(17 and 13), Ni(23 and 3), Pb(11 and 12), and Zn(37 and 33). The metals were associated with the soluble/exchangeable, carbonate, Mn/Fe-oxide, organic matter and residual forms to varying degrees. Kinetic extractions cumulatively leached metal concentrations akin to the mobilizable fractions extracted sequentially and the leaching data fitted well into the Elovich model. Metal mobilities were concordant for the three leaching procedures and varied in the order:WTS>WWTS. Calculated ecological risk indices suggested moderate and considerable metal toxicity in WTS and WWTS, respectively with Cd as the worst culprit. The findings may be useful in predicting heavy metals bioavailability and risks in the sludges to guide their disposal and use in land applications.

Removal of Reactive Blue 19 dye from Aqueous Solution Using Natural and Modified Orange Peel

  • Sayed Ahmed, Sohair A.;Khalil, Laila B.;El-Nabarawy, Thoria
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Orange peel (OP) exhibits a sorption capacity towards anionic dyes such as reactive blue 19 (RB19). Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was used to modify the surface nature of OP to enhance its adsorption capacity for anionic dyes from an aqueous solution. Four adsorbents were investigated: the OP, sodium hydroxide-treated OP (SOP), CTAB-modified OP and CTAB-modified SOP. The physical and chemical properties of these sorbents were determined using nitrogen adsorption at 77 K and by scanning electron microscope and Fourier transform infrared spectroscopy techniques. The adsorption of the RB19 dye was assessed with these sorbents at different solution pH levels and temperatures. The effect of the contact time was considered to determine the order and rate constants of the adsorption process. The adsorption data were analyzed considering the Freundlich, Langmuir, Elovich and Tempkin models. The adsorption of RB19 by the assessed sorbents is of the chemisorption type following pseudo-first-order kinetics. CTAB modification brought about a significant increase in RB19 adsorption, which was ascribed to the grafting of the sorbent with a cationic surfactant.

Adsorption characteristic of Cu(II) and phosphate using non-linear and linear isotherm equation for chitosan bead (비선형과 선형 등온흡착식을 이용한 키토산비드의 구리와 인산염의 흡착특성)

  • Kim, Taehoon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.201-210
    • /
    • 2020
  • 2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.