DOI QR코드

DOI QR Code

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies

야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Department of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2019.06.12
  • Accepted : 2019.07.02
  • Published : 2019.09.30

Abstract

The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

야자계 입상활성탄에 대한 Brilliant Green의 흡착 평형과 동역학 및 열역학 파라미터들을 다양한 초기농도($300{\sim}500mg\;L^{-1}$), 접촉시간(1 ~ 12 h) 및 흡착온도(303 ~ 323 K)를 변수로 하여 회분식 실험을 통하여 연구하였다. 흡착평형 값들은 Langmuir, Freundlich, Temkin, Harkins-Jura 및 Elovich 식으로 해석하였다. 그 결과는 Langmuir 식에 가장 잘 맞았으며, 평가된 Langmuir 무차원 분리계수 값($R_L=0.018{\sim}0.040$)과 Freundlich 상수값(1/n = 0.176 ~ 0.206)은 활성탄에 의한 Brilliant Green의 흡착이 효과적인 공정임을 보여주었다. Temkin 식에 의해 평가된 흡착열 관련상수($B=12.43{\sim}17.15J\;mol^{-1}$)는 물리흡착에 해당하였다. Harkins-Jura 식에 의한 등온선 매개변수($A_{HJ}$)는 온도가 증가할수록 이종 기공 분포도 증가함을 나타내었고, Elovich 식에 의한 최대흡착용량은 실험값보다 매우 적은 것으로 나타났다. 흡착공정은 유사이차반응속도식에 더 잘 맞았으며, 흡착과정은 입자내 확산이 율속단계였다. 입자내 확산속도 상수는 초기 농도가 커질수록 염료의 운동이 활발해졌기 때문에 증가하였다. 그리고 초기농도가 커질수록 경계층의 영향이 커졌다. Gibbs 자유에너지($-3.46{\sim}-11.35kJ\;mol^{-1}$), 엔탈피($18.63kJ\;mol^{-1}$) 및 활성화에너지($26.28kJ\;mol^{-1}$)는 흡착공정이 자발적이고, 흡열 및 물리흡착임을 나타냈다.

Keywords

References

  1. Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., and Pattabhi, S., "Utillization of Various Agricultural Wastes for Activated Carbon Preparation and Application for the Removal of Dyes and Metal Ions from Aqeous Solutions", Bioresour. Technol., 87, 129-132 (2003). https://doi.org/10.1016/S0960-8524(02)00201-8
  2. Gupta, V. K., and Ali, I., "Removal of Endosulfan and Methoxychlor from Water on Carbon Slurry", Environ. Sci. Technol., 42, 766-770 (2008). https://doi.org/10.1021/es7025032
  3. Mane, V. S., Mall, I. D., and Shrivastava, V. C., "Kinetic and Equilibrium Isotherm Studies for the Adsorptive Removal of Brilliant Green Dye from Aqueous Solution by Rice Husk Ash", J. Environ. Manage., 84, 390-400 (2007). https://doi.org/10.1016/j.jenvman.2006.06.024
  4. LabChem Inc., "Brilliant Green Safety Data Sheet," (2017).
  5. Mittal, A., Kaur, D., and Mittal, J., "Applicability of Waste Materials-Bottom Ash and Deoiled Soya-as Adsorbents for the Removal and Recovery of a Hazardous Dye, Brilliant Green", J. Colloid Interf. Sci., 326, 8-17 (2008). https://doi.org/10.1016/j.jcis.2008.07.005
  6. Nandi, B., Goswami, K. A., and Purkait, M. K., "Adsorption Characteristics of Brilliant Green Dye on Kaolin", J. Hazard. Mater., 161, 387-395 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.110
  7. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M., and Purkait, M. K., "Novel Acorn based Adsorbent for the Removal of Brilliant Green", Desalin., 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
  8. Rehman, M. S. U., Munir, M., Ashfaq, M., Rashid, N., Nazar, M. F., Danish, M., and Han, J. I., "Adsorption of Brilliant Green Dye from Aqueous Solution onto Red Clay," Chem. Eng. J., 228, 54-62 (2013). https://doi.org/10.1016/j.cej.2013.04.094
  9. Salem, M. A., Elsharkawy, R. G., and Hablas, M. F., "Adsorption of Brilliant Green Dye by Polyaniline/Silver Nanocomposite: Kinetic, Equilibrium, and Thermodynamic Studies," Eur. Polym. J., 75, 577-590 (2016). https://doi.org/10.1016/j.eurpolymj.2015.12.027
  10. Wikipedia, "Brilliant Green Dye", https://en.wikipedia.org. (accessed Jun. 2019).
  11. Nandi, B., Goswami, K. A., and Purkait, M. K., "Adsorption Characteristics of Brilliant Green Dye on Kaolin", J. Hazard. Mater., 161, 387-395 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.110
  12. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M., and Purkait, M. K., "Novel Acorn based Adsorbent for the Removal of Brilliant Green", Desalin., 281, 226-233 (2011). https://doi.org/10.1016/j.desal.2011.07.068
  13. P. Sivakumar and P. N. Palanisamy, Adsorption studies of Basic Red 29 by a non conventional activated carbon prepared from Euphorbia Antiquorum L, Int. J. Chem. Technol. Res., 1, 502-510 (2009).
  14. Shanavas, S., Kunju, A. S., Varghese, H. T., and Panicker, C. Y., "Comparison of Langmuir and Harkins-Jura Adsorption Isotherms for the Determination of Surface Area of Solids", Oriental J. Chem., 27, 245-252 (2011).
  15. Hamdaui, O., and Naffrechoux, E., "Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon", J. Hazard. Mater., 147, 381-394 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.021
  16. Lee, J. J., "Stut on Isotherm, Kinetic, Thermodynamic Parameter for Adsorption of Methyl Green Using Activated Carbon", Appl. Chem. Eng., 30, 190-197 (2019). https://doi.org/10.14478/ACE.2019.1001
  17. Grecel, O., Ozcan, A., Ozcanand, A. S., and Grecel, H. F., "Preparation of Activated Carbon from a Renewable Bio-Plant of Euphorbia Rigidia by H2SO4 Activation and Its Adsorption Behavior in Aqueous Solutions", Appl. Surf. Sci., 253, 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  18. Nethaji, S., Sivasamy, A., Thennarasu, G., and Saravanan, S., "Adsorption of Malachite Green Dye onto Activated Carbon Derived from Borassus Aethiopum Flower Biomass", J. Hazard. Mater., 181, 271-280 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.008
  19. Onal, Y., BaSar, C. A., Eren, D., Onalzdemir, C. S., and Depci, T., "Adsorption Kinetics of Malachite Green onto Activated Carbon Prepared from Tuncbilek Lignite", J. Hazard. Mater., B128, 150-157 (2006).
  20. Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., and Verstraete, W., "Removal of PCBs from Wastewater Using Fy Ash, Chemosphere, 53, 655-665 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  21. Bayramoglu, G., and Arica, M. Y., "Adsorption of Congo Red Dye by Native Amine and Carboxyl Modified Biomass of Funalia Trogii: Isotherms, Kinetics and Thermodynamics Mechanisms", Korean J. Chem. Eng., 35, 1303-1311 (2018). https://doi.org/10.1007/s11814-018-0033-9
  22. Hasani, S., Ardejani, F. D., and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye (Basic Red 18) Adsorption onto Montmorillonite: Numerical Simulation and Laboratory Experiments"' Korean J. Chem. Eng., 34, 2265-2274 (2017). https://doi.org/10.1007/s11814-017-0110-5