• Title/Summary/Keyword: Elliptic partial differential equations

Search Result 34, Processing Time 0.019 seconds

GENERALIZATION OF A FIRST ORDER NON-LINEAR COMPLEX ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV SPACE

  • MAMOURIAN, A.;TAGHIZADEH, N.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • In this paper we discuss on the existence of general solution of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z})+G(z,\;w,\;\bar{w})$ in the Sololev Space $W_{1,p}(D)$, that is generalization of a first order Non-linear Elliptic System of Partial Differential Equations $\frac{{\partial}w}{{\partial}\bar{z}}=F(z,\;w,\;\frac{{\partial}w}{{\partial}z}).$

  • PDF

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

AN ABSTRACT DIRICHLET PROBLEM IN THE HILBERT SPACE

  • Hamza-A.S.Abujabal;Mahmoud-M.El-Boral
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.109-116
    • /
    • 1997
  • In the present paper we consider an abstract partial dif-ferential equation of the form $\frac{\partial^2u}{{\partial}t^2}-\frac{\partial^2u}{{\partial}x^2}+A(x.t)u=f(x, t)$, where ${A(x, t):(x, t){\epsilon}\bar{G} }$ is a family of linear closed operators and $G=GU{\partial}G$, G is a suitable bounded region in the (x, t)-plane with bound-are ${\partial}G$. It is assumed that u is given on the boundary ${\partial}G$. The objective of this paper is to study the considered Dirichlet problem for a wide class of operators $A(x, t)$. A Dirichlet problem for non-elliptic partial differential equations of higher orders is also considerde.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

EXTENDED JACOBIN ELLIPTIC FUNCTION METHOD AND ITS APPLICATIONS

  • Chen, Huaitang;Zhang, Hongqing
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.119-130
    • /
    • 2002
  • An extended Jacobin elliptic function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation that Jacobin elliptic functions satisfy and use its solutions to replace Jacobin elliptic functions in Jacobin elliptic function method. It is interesting that many other methods are special cases of our method. Some illustrative equations are investigated by this means.

A SIXTH-ORDER OPTIMAL COLLOCATION METHOD FOR ELLIPTIC PROBLEMS

  • Hong, Bum-Il;Ha, Sung-Nam;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.513-522
    • /
    • 1999
  • In this paper we present a collocation method based on biquintic splines for a fourth order elliptic problems. To have a better accuracy we formulate the standard collocation method by an appro-priate perturbation on the original differential equations that leads to an optimal approximating scheme. As a result computational results confirm that this method is optimal.

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1998
  • We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

  • PDF