Automatic human face detection in a complex background is one of the difficult problems In this paper. we propose an effective automatic face detection system that can locate the face region in natural scene images when the system is used as a pre-processor of a face recog- nition system. We use two natural and powerful visual cues, the color and the human head shape. The outline of the human head can be generally described as being roughly elliptic in nature. In the first step of the proposed system, we have tried the approach of fitting the best Possible ellipse to the outline of the head In the next step, the method based on the human skin color space by selecting flesh tone regions in color images and histogramming their r(=R/(R+G+B)) and g(=G/R+G+B)) values. According to our experiment. the proposed system shows robust location results
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권1호
/
pp.37-55
/
2023
In this paper we propose a new algorithm for detecting and counting flowers in a complex background based on digital images. The algorithm mainly includes the following parts: edge contour extraction of flowers, edge contour determination of overlapped flowers and flower counting. We use a contour detection technique in Computer Vision (CV) to extract the edge contours of flowers and propose an improved algorithm with a concave point detection technique to find accurate segmentation for overlapped flowers. In this process, we first use the polygon approximation to smooth edge contours and then adopt the second-order central moments to fit ellipse contours to determine whether edge contours overlap. To obtain accurate segmentation points, we calculate the curvature of each pixel point on the edge contours with an improved Curvature Scale Space (CSS) corner detector. Finally, we successively give three adaptive judgment criteria to detect and count flowers accurately and automatically. Both experimental results and the proposed evaluation indicators reveal that the proposed algorithm is more efficient for flower counting.
Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.
We present the results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) field. A background galaxy ($z_s=0.245$) is severely distorted by a nearby elliptical galaxy ($z_l=0.08$), via gravitational lensing. The system is analysed by several methods, including surface brightness fitting, gravitational lens modeling, and spectral energy distribution fitting. From Galfit and Ellipse we measure basic parameters of the galaxy, such as the effective radius and the average surface brightness within it. gravlens yields the total mass inside the Einstein radius ($R_{Ein}$), and MAGPHYS gives us an estimate of the stellar mass inside $R_{Ein}$. By comparing these parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane and calculate the stellar mass fraction inside $R_{Ein}$, and discuss the results with regards to the initial mass function.
본 논문에서는 참외 수확로봇을 위한 비전 기반 참외 위치인지 알고리즘을 제시하였다. 입력된 영상의 RGB값을 HSI값으로 변환 후 Hue 값을 이용하여 이진화를 수행한 후에 참외 영역을 추출하였다. 형태학적 필터링을 이용하여 잡음을 제거한 후에 경계선 검출과 convex hull 기법을 이용하여 최외각 정점을 검출하였다. RANSAC 알고리즘에 의하여 참외에 대한 타원 정합을 수행하고 참외의 중심점, 장축 및 단축의 길이, 회전각도에 대한 정보를 획득하였다. 참외 모델에 대한 다양한 시뮬레이션 실험에 의해 제안한 방법의 유효성을 검증하였고, 실제 참외에 적용시켜 제안한 방법의 타당성을 확인하였다.
광학 현미경을 통해 일정한 시간 간격으로 얻은 세포 이미지로부터 세포 변화를 자동적으로 추적 및 분석하는 것이 세포 트래킹이라고 한다. 세포 변화 과정에서 이웃에 있는 세포들이 겹쳐져 있는 상태를 클러스터라고 하며 세포트래킹에서 클러스터를 다시 세포로 분리하는 작업은 매우 중요하다. 본 논문에서는 타원 근사법을 기반으로 클러스터를 분리하기 위한 알고리즘을 제안한다. 클러스터의 외곽선을 추출한 후 외곽선의 오목정점을 이용하여 클러스터를 라인 세그먼트들로 분리한 다음 휴리스틱을 이용하여 라인 세그먼트들을 결합해 가며 근사 타원을 생성한다. 실험 결과 두 개의 세포가 겹쳐진 클러스터의 경우 평균적으로 91%, 세 개의 세포가 겹쳐진 경우 평균적으로 84% 그리고 겹쳐진 세포의 개수가 네 개 이상인 경우 약 73%의 정확도로 클러스터를 분리해 주었다.
구상성단 NGC 7006의 거성종족에 따른 성단 중심부의 역학적 세부구조 변화를 알아보기 위해서 VGC 7006의 BV CCD영상에 대해 점광원 함수 측광을 실시하여 4개의 거성종족을 분류한 후 각 종족을 차례대로 제거하면서 ellipse맞추기를 실시하여 성단의 중심으로부터 반경에 따른 타원율과 위치각의 변화를 얻었다. 타원율과 위치각의 전체적인 변화를 살펴보면, $r_{eff}<3r_h$ 영역에서 타원율은 $0.02\~0.06$의 변화를 보이며 위치각의 경우는 $-10^{\circ}\~+90^{\circ}$의 변화를 보인다. 거성종족의 제거에 따른 NGC 7006의 중심부 타원율과 위치각의 변화를 보면, $r_{eff}인 영역에서 밝은 거성종족을 제거했을 경우 타원율과 위치각의 변화가 각각 $-0.05\~+0.05,-20^{\circ}\~+20^{\circ}$로 나타났으며, 수평계열을 제거했을 경우에는 각각 $-0.05\~+0.025,-25^{\circ}\~+20^{\circ}$로 나타나는 것으로부터 중심부에서는 밝은 거성종족과 수평계열에 의한 영향이 가장 크다는 것을 유추할 수 있다. 또한, 어두운 거성종족에 의한 중심부의 타원율과 위치각의 변화도 확인 할 수 있었던 반면 준거성종족에 의해서는 크게 영향을 받지 않는 것을 확인 할 수 있었다.
본 논문에서는 복잡한 배경과 조명의 영향과 그리고 얼굴의 크기가 변화하는 경우에도 주어진 영상으로부터 얼굴을 검출하는 새로운 효율적인 방법을 제안한다. 정면 얼굴의 경계선이 타원과 유사한 형태를 가지며 얼굴을 수직으로 이등분하는 직선을 기준으로 얼굴의 좌우 외곽선은 반사 대칭 (reflection symmetry) 의 조건을 만족한다. 이러한 반사 대칭의 조건을 허프 (Hough) 변환과 유사한 타원 모델링에 결합하여 주어진 영상에서 얼굴을 검출한다. 얼굴이 포함된 다양한 영상에서 실험을 통하여 제안한 얼굴 검출방법의 타당성을 확인하였다.
셀 트래킹의 목적은 셀의 이동(translocation), 분할(mitosis), 통합(fusion), 아포토시스(apoptosis), 셀의 모양 변형, 셀들 간의 상호 작용 등을 포함하는 모든 셀의 행동들을 분석하기 위한 것이다. 셀은 시간이 경과함에 따라 새롭게 나타나기도, 죽기도 하며 한 개 이상의 셀이 부분적으로 겹쳐 클러스터를 형성하기도 하고 클러스터는 다시 여러 개의 셀로 분리되기도 한다. 본 연구에서는 현미경으로부터 얻은 이미지에서 셀 트래킹을 위한 이미지 처리 방법과 오목 정점을 이용하여 셀과 클러스터를 구분하여 계수하는 방법을 제시한다. 또한 타원 근사법(ellipse fitting)을 통해 클러스터를 몇 개의 셀로 분리하기 위한 방법을 제시하고 결과를 분석한다.
영상에서 타원을 추출하는 것은 얼굴 인식, 홍채 인식과 같은 컴퓨터 비전분야에서 인식할 영역을 찾는 방법으로 상당히 유용하게 사용된다. 본 논문에서는 기존의 퍼지 C-means 기법이 초기의 클러스터 개수와 중심 값에 따라서 결과가 민감하다는 단점을 보완한 개선된 퍼지 C-means 기법을 타원 추출에 적용한다. 이것은 영상 분할(Segmentation)로부터 후보 초기 클러스터 개수 및 초기 클러스터 중심을 결정하는 방법으로서 본 논문에서는 이 기법으로 영상 클러스터링을 수행하여 타원 영역 추출에 필요한 타원 후보 영역의 최소 인접 사각형(Minimum Enclosed Rectangle)을 찾아낸다. 이렇게 찾아진 최소 인접 사각형에 대해서 면적에 맞는 초기 타원들을 영역 내에 설정한 뒤 적합도(fittness)검사를 기반으로 한 타원 검증을 실시하고 적합도가 높은 영역을 타원 영역으로 추출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.