• Title/Summary/Keyword: Eletric conductivity

Search Result 4, Processing Time 0.017 seconds

2.5 Dimensional Electromagnetic Finite Element Numerical modeling using linear conductivity variation (선형적 물성변화를 고려하는 유한요소법을 이용한 2.5차원 전자탐사 수치모델링)

  • Ko, Kwang-Beom;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.131-138
    • /
    • 1998
  • Numerical modeling for electromagnetic exploration methods are essential to understand behaviours of electromagnetic fields in complex subsurfaces. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space and compared with other three dimensional numerical results.

  • PDF

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

2.5-Dimensional Electromagnetic Numerical Modeling and Inversion (2.5차원 전자탐사 수치모델링 및 역해)

  • Ko Kwang-Beom;Suh Jung-Hee;Shin Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • Numerical modeling and inversion for electromagnetic exploration methods are essential to understand behaviour of electromagnetic fields in complex subsurface. In this study, a finite element method was adopted as a numerical scheme for the 2.5-dimensional forward problem. And a finite element equation considering linear conductivity variation was proposed, when 2.5-dimensional differential equation to couple eletric and magnetic field was implemented. Model parameters were investigated for near-field with large source effects and far-field with responses dominantly by homogeneous half-space. Numerical responses by this study were compared with analytic solutions in homogeneous half-space. Blocky inversion model was modified to be applied to the forward calculation in this study and it was also adopted in the inversion algorithm. Resolution for isolated bodies were investigated to confirm possibility and limitation of inversion for electromagnetic exploration data.

  • PDF

DC Electric Field Characteristics considering Thermal Effect for HVDC Slip-on Type Outdoor Termination (HVDC 슬립 온형 기중 종단접속함에 대한 열 영향 반영 DC 전계 특성 평가)

  • Kwon, Ik-Soo;Hwang, Jae-Sang;Koo, Jae-Hong;Sakamoto, Kuniaki;Lee, Bang-Wook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • A outdoor termination installed at the outdoor substation is required to connect undergroud cables and overhead transmission lines. The joint box for AC transmission system is already developed and widely used to interconnect overhead and undergroud systems. But the development of the joint box for DC transmission system was only introduced from China and Japan, but theire developemnt staus and core technologies were not fully reported. In order to implement HVDC systems connecting ovehead transmission lines and undergroud cables, a outdoor termination should be developed, but the detailed specifications and information of this device were not reported. It is estimated that the development of the joint box for DC environment has some technical obstacles including insulating materials, electric field mitigation, thermal temperature rise, and space charge accumuations. Among this, the most important one is the DC elctrical insualtion design. Therefore, in order to investigate the DC elctrical insualton design of outdoor termination, the design of AC slip-on type outdoor termination is reffered, and DC electric field analysis performed to verify the possiblity of application of AC joint box into DC joint box. Especially for DC electric field analysis, temperature rise of insualting materials of a joint box was considered, because the conductivity of materials could be changed due to temperature rise. Furthermore, DC electric field analysis considering transinet state, and polarity reversal state were also investigated to verify which state is the most severe condition for the DC joint box. From the simualtion resulsts, it was shown that the value and the position of maximum electric field was obtained comparing AC state, DC state without temperaure rise, and DC state with temperaure rise. And it was confimred that severe DC electric field was observed considing temperaure rise. Finally, in order to reduce DC eletric field intensifation, different configuration of the joint box was applied and it was not possible to obtain satisfactory results. It means that the slight change of configuration of AC joint box was not the suitable soluton for DC joint box. It is essential to establish novel DC insulaton design skills and method for DC joint box to commercialze this product in the near future.