• Title/Summary/Keyword: Element stiffness matrix

Search Result 496, Processing Time 0.019 seconds

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF

A Study on Unstable Phenomenon of Space Truss Structures Considering Initial Imperfection (트러스형 공간구조물의 초기 불완전을 고려한 불안정 현상에 관한 연구)

  • Lee, Jin-Hyouk;Baik, Tai-Soon;Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.63-71
    • /
    • 2004
  • The structural space is gradually wide and is wanting agreeable environment by the requirement and necessity of people who lives modem stage. The building coincides with such requirements and is the high rise building actual circumstances which is doing ultra-large. The confirmed report of the technology to organize great merit is becoming currently considerably important issue in constructing a building field. Thus, this paper examine closely for nonlinear unstable taking a picture uneasiness height of prosperity considering to initial imperfection by a numerical method with a space frame structure of discrete system in large space structure. Based on previous investigation method, this paper induce nodal stiffness matrix of solid truss elements considering geometrical nonlinear using finite element method. In this paper, three types of space structure considered; i) 1-free node space structure, ii) 2-free node space structure, iii) multi-free node space structure. It apply the above examples to a nonlinear program, next, grasp the characteristic of an unstable conduct and the result was a clearing low.

  • PDF

Follower Effect of the Axisymmetric Shells under External Pressure (축대칭 쉘 구조물에 작용하는 외압의 부가효과)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.195-202
    • /
    • 2004
  • The shell due to the effect of initial normal pressures on the shell surface was based on the assumption that the directions of the pressures are always normal to the undeformed shell surface, and that the change in the surface area of the shell is negligible. But the fact that the pressure are always normal to the deforming surface leads "follower force". The follower effect in the analysis can significantly alter the solution for natural frequency and buckling load as compared to the case when the direction of the pressures are assumed to be normal to the uniform shell surface. The expression for the part of strain energy contribution from normal pressure due to the effect of follower force was derived and added to the element stiffness matrix of axisymmetric shell. In the case of increasing external pressure, the natural frequencies decrease until one of them reaches zero. Theoretically the smallest applied load that reduces the frequency of any mode to zero, will have same magnitude as that of the buckling load. In order to determine the bucking load of the shell a few sets of frequencies are computed and the results considering the follower effects are well with the exact solution while the case without that are quite different. But in case of hemispherical dome, there are little difference in buckling pressure between with and without the effect of follower force.