• 제목/요약/키워드: Element inverse

검색결과 361건 처리시간 0.02초

재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가 (Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties)

  • 이진학;김재민;김영상;문성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF

Simultaneous identification of moving loads and structural damage by adjoint variable

  • Abbasnia, Reza;Mirzaee, Akbar;Shayanfar, Mohsenali
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.871-897
    • /
    • 2015
  • This paper presents a novel method based on sensitivity of structural response for identifying both the system parameters and input excitation force of a bridge. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The computational cost of sensitivity analyses is the main concern associated with damage detection by these methods. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. The reliable performance of the method to precisely indentify the location and intensity of all types of predetermined single, multiple and random damages over the whole domain of moving vehicle speed is shown. A comparison study is also carried out to demonstrate the relative effectiveness and upgraded performance of the proposed method in comparison to the similar ordinary sensitivity analysis methods. Moreover, various sources of error including the effects of noise and primary errors on the numerical stability of the proposed method are discussed.

Damage assessment of reinforced concrete beams including the load environment

  • Zhu, X.Q.;Law, S.S.;Hao, H.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.765-779
    • /
    • 2009
  • Quantitative condition assessment of structures has been traditionally using proof load test leading to an indication of the load-carrying capacity. Alternative approaches using ultrasonic, dynamics etc. are based on the unloaded state of the structure and anomalies may not be fully mobilized in the load resisting path and thus their effects are not fully included in the measured responses. This paper studies the effect of the load carried by a reinforced concrete beam on the assessment result of the crack damage. This assessment can only be performed with an approach based on static measurement. The crack damage is modelled as a crack zone over an area of high tensile stress of the member, and it is represented by a damage function for the simulation study. An existing nonlinear optimization algorithm is adopted. The identified damage extent from a selected high level load and a low load level are compared, and it is concluded that accurate assessment can only be obtained at a load level close to the one that creates the damage.

AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석 (Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector)

  • 조인수;권지원;이진욱
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구 (A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters)

  • 최병민;우호길
    • 한국소음진동공학회논문집
    • /
    • 제17권3호
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

AES Rijndael 블록 암호 알고리듬의 효율적인 하드웨어 구현 (An Efficient Hardware Implementation of AES Rijndael Block Cipher Algorithm)

  • 안하기;신경욱
    • 정보보호학회논문지
    • /
    • 제12권2호
    • /
    • pp.53-64
    • /
    • 2002
  • This paper describes a design of cryptographic processor that implements the AES (Advanced Encryption Standard) block cipher algorithm, "Rijndael". An iterative looping architecture using a single round block is adopted to minimize the hardware required. To achieve high throughput rate, a sub-pipeline stage is added by dividing the round function into two blocks, resulting that the second half of current round function and the first half of next round function are being simultaneously operated. The round block is implemented using 32-bit data path, so each sub-pipeline stage is executed for four clock cycles. The S-box, which is the dominant element of the round block in terms of required hardware resources, is designed using arithmetic circuit computing multiplicative inverse in GF($2^8$) rather than look-up table method, so that encryption and decryption can share the S-boxes. The round keys are generated by on-the-fly key scheduler. The crypto-processor designed in Verilog-HDL and synthesized using 0.25-$\mu\textrm{m}$ CMOS cell library consists of about 23,000 gates. Simulation results show that the critical path delay is about 8-ns and it can operate up to 120-MHz clock Sequency at 2.5-V supply. The designed core was verified using Xilinx FPGA board and test system.

Effect of post processing of digital image correlation on obtaining accurate true stress-strain data for AISI 304L

  • Angel, Olivia;Rothwell, Glynn;English, Russell;Ren, James;Cummings, Andrew
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3205-3214
    • /
    • 2022
  • The aim of this study is to provide a clear and accessible method to obtain accurate true-stress strain data, and to extend the limited material data beyond the ultimate tensile strength (UTS) for AISI 304L. AISI 304L is used for the outer construction for some types of nuclear transport packages, due to its post-yield ductility and high failure strain. Material data for AISI 304L beyond UTS is limited throughout literature. 3D digital image correlation (DIC) was used during a series of uniaxial tensile experiments. Direct method extracted data such as true strain and instantaneous cross-sectional area throughout testing such that the true stress-strain response of the material up to failure could be created. Post processing of the DIC data has a considerable effect on the accuracy of the true stress-strain data produced. Influence of subset size and smoothing of data was investigated by using finite element analysis to inverse model the force displacement response in order to determine the true stress strain curve. The FE force displacement response was iteratively adapted, using subset size and smoothing of the DIC data. Results were validated by matching the force displacement response for the FE model and the experimental force displacement curve.

Establishing non-linear convective heat transfer coefficient

  • Cuculic, Marijana;Malic, Neira Toric;Kozar, Ivica;Tibljas, Aleksandra Deluka
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.107-119
    • /
    • 2022
  • The aim of the work presented in this paper is development of numerical model for prediction of temperature distribution in pavement according to the measured meteorological parameters, with introduction of non-linear heat transfer coefficient which is a function of temerature difference between the air and the pavement. Developed model calculates heat radiated from the pavement back in the air, which is an important part of the heat trasfer process in the open air surfaces. Temperature of the pavement surface, heat radiation together with many meteorological parameters were measured in series during two years in order to validate the model and calibrate model parameters. Special finite element method for temperature heat transfer towards the soil together with the time integration scheme are used to solve the governing equation. It is proved that non-linear heat transfer coefficient, which is a function of time and temperature difference between the air and the pavement, is required to decribe this phenomena. Proposed model includes heat tranfer coefficient callibration for specific climate region, through the iterative inverse procedure.

Dynamic analyses for an axially-loaded pile in a transverse-isotropic, fluid-filled, poro-visco-elastic soil underlain by rigid base

  • Zhang, Shiping;Zhang, Junhui;Zeng, Ling;Yu, Cheng;Zheng, Yun
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.53-63
    • /
    • 2022
  • Simplified analytical solutions are developed for the dynamic analyses of an axially loaded pile foundation embedded in a transverse-isotropic, fluid-filled, poro-visco-elastic soil with rigid substratum. The pile is modeled as a viscoelastic Rayleigh-Love rod, while the surrounding soil is regarded as a transversely isotropic, liquid-saturated, viscoelastic, porous medium of which the mechanical behavior is represented by the Boer's poroelastic media model and the fractional derivative model. Upon the separation of variables, the frequency-domain responses for the impedance function of the pile top, and the vertical displacement and the axial force along the pile shaft are gained. Then by virtue of the convolution theorem and the inverse Fourier transform, the time-domain velocity response of the pile head is derived. The presented solutions are validated, compared to the existing solution, the finite element model (FEM) results, and the field test data. Parametric analyses are made to show the effect of the soil anisotropy and the excitation frequency on the pile-soil dynamic responses.

블라인드 워터마킹을 내장한 실시간 비디오 코덱의 FPGA기반 단일 칩 구조 및 설계 (FPGA-based One-Chip Architecture and Design of Real-time Video CODEC with Embedded Blind Watermarking)

  • 서영호;김대경;유지상;김동욱
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1113-1124
    • /
    • 2004
  • 본 논문에서는 입력 영상을 실시간으로 압축 및 복원할 수 있는 하드웨어(hardware, H/W)의 구조를 제안하고 처리되는 영상의 보안 및 보호를 위한 워터마킹 기법(watermarking)을 제안하여 H/W로 내장하고자 한다. 영상압축과 복원과정을 하나의 FPGA 칩 내에서 처리할 수 있도록 요구되는 모든 영상처리 요소를 고려하였고 VHDL(VHSIC Hardware Description Language)을 사용하여 각각을 효율적인 구조의 H/W로 사상하였다. 필터링과 양자화 과정을 거친 다음에 워터마킹을 수행하여 최소의 화질 감소를 가지고 양자화 과정에 의해 워터마크의 소실이 없으면서 실시간으로 동작이 가능하도록 하였다. 구현된 하드웨어는 크게 데이터 패스부(data path part)와 제어부(Main Controller, Memory Controller)로 구분되고 데이터 패스부는 영상처리 블록과 데이터처리 블록으로 나누어진다. H/W 구현을 위해 알고리즘의 기능적인 간략화를 고려하여 H/W의 구조에 반영하였다. 동작은 크게 영상의 압축과 복원과정으로 구분되고 영상의 압축 시 대기지연 시간 없이 워터마킹이 수행되며 전체 동작은 A/D 변환기에 동기하여 필드단위의 동작을 수행한다. 구현된 H/W는 APEX20KC EP20K600CB652-7 FPGA 칩에서 69%(16980개)의 LAB(Logic Array Block)와 9%(28352개)의 ESB(Embedded System Block)을 사용하였고 최대 약 82MHz의 클록주파수에서 안정적으로 동작할 수 있어 초당 67필드(33 프레임)의 영상에 대해 워터마킹과 압축을 실시간으로 수행할 수 있었다.