• Title/Summary/Keyword: Element inverse

Search Result 359, Processing Time 0.023 seconds

An Analytical Approach for Structural Synthesis of Substructures

  • Eun, Hee-Chang;Park, Sang-Yeol;Lee, Eun-Taik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1529-1536
    • /
    • 2004
  • A structure is broken down into a number of substructures by means of the finite element method and the substructures are synthesized for the complete structure. The divided substructures take two types: fixed-free and free-free elements. The flexibility and stiffness matrices of the free-free elements are the Moore-Penrose inverse of each other. Thus, it is not easy to determine the equilibrium equations of the complete structure composed of two mixed types of substructures. This study provides the general form of equilibrium equation of the entire structure through the process of assembling the equilibrium equations of substructures with end conditions of mixed types. Applications demonstrate that the proposed method is effective in the structural analysis of geometrically complicated structures.

Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size

  • Nanda, Bharadwaj;Maity, Damodar;Maiti, Dipak Kumar
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • A simple and robust methodology is presented to determine the location and amount of crack in beam like structures based on the incremental particle swarm optimization technique. A comparison is made for assessing the performance of standard particle swarm optimization and the incremental particle swarm optimization technique for detecting crack in structural members. The objective function is formulated using the measured natural frequency of the intact structure and the frequency obtained from the finite element simulation. The outcomes of the simulated results demonstrate that the developed method is capable of detecting and estimating the extent of damages with satisfactory precision.

An Interval Approach for Design and Analysis of Mechanical Systems with Uncertainties

  • Shin, Jae-Kyun;Li Chen;Jang, Woon-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.5-14
    • /
    • 2002
  • This paper addresses the challenges of dealing with uncertainties based on interval analysis. An interval approach is proposed on the basis of Boundary Selection Method (BSM) for treating systems of linear interval equations in the presence of columnwise dependencies. An iterative procedure is developed for the problem solving where uncertainties are characterized in the form of interval quantities. An applied example is used to illustrate effectiveness and usefulness of the proposed approach. This new method can be applied for such circumstances that involve finite element analysis of structures, inverse dynamic analysis of mechanisms, and worst case design studies in the presence of the uncertainties.

Estimation of Damping Matrices for Dynamic Systems (동적 시스템의 감쇠행렬 추정)

  • Lee, Gun-Myung;Kim, Kyung-Ju;Ju, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1021-1027
    • /
    • 2009
  • Finite element models of dynamic systems can be updated in two stages. In the first stage, mass and stiffness matrices are updated neglecting damping. In the second stage, a damping matrix is estimated with the mass and stiffness matrices fixed. Methods to estimate a damping matrix for this purpose are proposed in this paper. For a system with proportional damping, a damping matrix is estimated using the modal parameters extracted from the measured responses and the modal matrix calculated from the mass and stiffness matrices from the first stage. For a system with non-proportional damping, a damping matrix is estimated from the impedance matrix which is the inverse of the FRF matrix. Only one low or one column of the FRF matrix is measured, and the remaining FRFs are synthesized to obtain a full FRF matrix. This procedure to obtain a full FRF matrix saves time and effort to measure FRFs.

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

  • Wang, Hong-Jun;Song, Yi-Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.991-1002
    • /
    • 2011
  • An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

Temperature Distribution and Thermal Stress Analyses of a Large LPLi Engine Piston (LPG 액정분사 방식의 대형 엔진용 피스톤의 온도분포와 열응력 해석)

  • 임문혁;손재율;이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-550
    • /
    • 2004
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston with the oil gallery are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed. With varying cooling water temperature, temperature, stress, and thermal expansion of the piston are analyzed and evaluated.

STRONG CONVERGENCE OF STRICT PSEUDO-CONTRACTIONS IN Q-UNIFORMLY SMOOTH BANACH SPACES

  • Pei, Yonggang;Liu, Fujun;Gao, Qinghui
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.13-31
    • /
    • 2015
  • In this paper, we introduce a general iterative algorithm for finding a common element of the common fixed point set of an infinite family of ${\lambda}_i$-strict pseudo-contractions and the solution set of a general system of variational inclusions for two inverse strongly accretive operators in q-uniformly smooth Banach spaces. Then, we analyze the strong convergence of the iterative sequence generated by the proposed iterative algorithm under mild conditions.

Two-Dimensional Inversion for Dipole-Dipole Resistivity Data (쌍극자 비저항 데이타에 대한 2차원 역해석)

  • Kim, Hee Joon;Kim, Younghwa
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 1988
  • We present a precedure for interpreting dipole-dipole apparent resistivity data. The procedure is constructed by combining a forward two-dimensional finite element modeling and an inverse technique with Householder's transformation. In the interpretation, subsurface structure is divided into some blocks with constant resistivities. Our inversion technique is tested on synthetic and field data. We found that geologic constraint is required for successful interpretation.

  • PDF

Vibration Analysis of a Coil Spring by Using Dynamic Stiffness Method (동강성법을 이용한 코일스프링의 진동 해석)

  • Lee, Jae-Hyung;Kim, Seong-Keol;Heo, Seung-Jin;Thompson, D.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1933-1938
    • /
    • 2000
  • The partial differential equations for a coil spring derived from Timoshenko beam theory and Frenet formulae. Dynamic stiffness matrix of a coil spring composed of a circular wire is assembled by using dispersion relationship, waves and natural frequencies. Natural frequencies are obtained from maxima in the determinant of inverse of a dynamic stiffness matrix with appropriate boundary conditions. The results of the dynamic stiffness method are compared with those of transfer matrix method, finite element method and test.

  • PDF