• 제목/요약/키워드: Element inverse

검색결과 361건 처리시간 0.027초

Effect of progressive shear punch of a foundation on a reinforced concrete building behavior

  • Naghipour, Morteza;Niak, Kia Moghaddas;Shariati, Mahdi;Toghroli, Ali
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.279-294
    • /
    • 2020
  • Foundation of a building is damaged under service loads during construction. First visit shows that the foundation has been punched at the 6 column's foot region led to building rotation. Foundation shear punching occurring has made some stresses and deflections in construction. In this study, progressing of damage caused by foundation shear punching and inverse loading in order to resolve the building rotation has been evaluated in the foundation and frame of building by finite element modeling in ABAQUS software. The stress values of bars in punched regions of foundation has been deeply exceeded from steel yielding strength and experienced large displacement based on software's results. On the other hand, the values of created stresses in the frame are not too big to make serious damage. In the beams and columns of ground floor, some partial cracks has been occurred and in other floors, the values of stresses are in the elastic zone of materials. Finally, by inverse loading to the frame, the horizontal displacement of floors has been resolved and the values of stresses in frame has been significantly reduced.

승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구 (Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology)

  • 송민근;이상권;서상훈
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

Research on the Effects of Boundary Element Characteristics on Reconstruction Accuracy by BEM-based NAH

  • Zhang, Hai-Bin;Kim, Yang-Hann;Jiang, Wei-Kang
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.630-635
    • /
    • 2012
  • Nearfield acoustic holography method predicts an unmeasured sound field, therefore it depends on its prediction methods. In particular, if one has radiators or scatters, which cannot be expressed by simple geometry, then inverse boundary element method (BEM) is normally employed to reconstruct the sound field induced by sound sources with irregular profiles. The characteristics of boundary element, including the element shape, characteristic length, order of shape function and others, affect the reconstruction error. Investigating the errors by means of changing these factors will provide a guide line for selecting appropriate factors, associated with the elements of BEM. These factors are investigated by numerical simulations, and the accuracies with respect to the variant factors are compared. Novel suggestions for selecting appropriate boundary element factors are described based on the simulation results.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Computation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 소성∙가공
    • /
    • 제7권5호
    • /
    • pp.474-480
    • /
    • 1998
  • In the present study a domain decomposition scheme using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. in order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method the program is easily paralleized using the Parallel Virtual machine(PVM) library on a work-station cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various number of subdomains and number of processors. The efficiency of the parallel computation is discussed by comparing the results.

  • PDF

FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석 (Thermal Analysis of Automotive Disc Brake Using FFT-FEM)

  • 최지훈;김도형;이인
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

격자식 미세구조 성장 모델을 이용한 다결정 박막 소재의 유한 요소 해석 (Lattice based Microstructure Evolution Model for Monte Carlo Finite Element Analysis of Polycrystalline Materials)

  • 최재환;김한성;이준기;나경환
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.248-252
    • /
    • 2004
  • The mechanical properties of polycrystalline thin-films, critical for Micro-Electro-Mechanical Systems (MEMS) components, are known to have the size effect and the scatter in the length scale of microns by the numbers of intensive investigation by experiments and simulations. So, the consideration of the microstructure is essential to cover these length scale effects. The lattice based stochastic model for the microstructure evolution is used to simulate the actual microstructure, and the fast and reliable algorithm is described in this paper. The kinetics parameters, which are the key parameters for the microstructure evolution based on the nucleation and growth mechanism, are extracted from the given micrograph of a polycrystalline material by an inverse method. And the method is verified by the comparison of the quantitative measures, the number of grains and the grain size distribution, for the actual and simulated microstructures. Finite element mesh is then generated on this lattice based microstructure by the developed code. And the statistical finite element analysis is accomplished for selected microstructure.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • 대한수학회보
    • /
    • 제35권2호
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

새로운 개념의 비반복적 비점증적 비선형해석 (New Non-iterative Non-incremental Nonlinear Analysis)

  • 김치경;황영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.514-519
    • /
    • 2006
  • This paper presents a new nonlinear analysis algorithm which uses the equivalent nodal load for the element stiffness. The equivalent nodal load represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The nonlinear analysis of structures using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in each loading step. In this paper, the concept of nonlinear analysis using the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

  • PDF

부구조법에 의한 영역 분할 및 강소성 유한요소해석의 병렬 계산 (Domain Decomposition using Substructuring Method and Parallel Comptation of the Rigid-Plastic Finite Element Analysis)

  • 박근;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.246-249
    • /
    • 1998
  • In the present study, domain decomposition using the substructuring method is developed for the computational efficiency of the finite element analysis of metal forming processes. In order to avoid calculation of an inverse matrix during the substructuring procedure, the modified Cholesky decomposition method is implemented. As obtaining the data independence by the substructuring method, the program is easily parallelized using the Parallel Virtual Machine(PVM) library on a workstation cluster connected on networks. A numerical example for a simple upsetting is calculated and the speed-up ratio with respect to various domain decompositions and number of processors. Comparing the results, it is concluded that the improvement of performance is obtained through the proposed method.

  • PDF

다층 반무한 기본해를 이용한 경계요소해석 (Boundary Element Method for Multilayered Media Using Numerical Fundamental Solutions)

  • 김문겸;오금호;김민규;박준상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 1996
  • A boundary element method which utilizes the fundamental solution in the half plane is developed to analyze the multi-layered elastic media. The objective of this study is to derive numerically the fundamental solutions and to apply those to the exterior multi-layered domain problems. To obtain numerical fundamental solutions of multi-layered structural system, the same number of solutions as that of layers in Fourier transform domain are employed. The numerical integration technique is used in order to inverse the Fourier transform solution to real domain. To verify the proposed boundary element method, two examples are treated: (1) a circular hole near the surface of a half plane; and (2) a circular cavity within one layer of four layered half plane.

  • PDF