• Title/Summary/Keyword: Element Stiffness Matrix

Search Result 498, Processing Time 0.022 seconds

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

An exact finite element for a beam on a two-parameter elastic foundation: a revisit

  • Gulkan, P.;Alemdar, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.259-276
    • /
    • 1999
  • An analytical solution for the shape functions of a beam segment supported on a generalized two-parameter elastic foundation is derived. The solution is general, and is not restricted to a particular range of magnitudes of the foundation parameters. The exact shape functions can be utilized to derive exact analytic expressions for the coefficients of the element stiffness matrix, work equivalent nodal forces for arbitrary transverse loads and coefficients of the consistent mass and geometrical stiffness matrices. As illustration, each distinct coefficient of the element stiffness matrix is compared with its conventional counterpart for a beam segment supported by no foundation at all for the entire range of foundation parameters.

Vector algorithm for layered reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 1995
  • A new vector algorithm is presented for computing the stiffness matrices of layered reinforced concrete shell elements. Each element stiffness matrix is represented in terms of three vector arrays of lengths 78, 96 and 36, respectively. One element stiffness matrix is calculated at a time without interruption in the vector calculations for the uncracked or cracked elements. It is shown that the present algorithm is 1.1 to 7.3 times more efficient then a previous algorithm developed by us on a Cray Y-MP supercomputer.

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

An Analysis of the Reinforced Concrete Circular Ring Sector Plates with Arbitrary Boundary Conditions (I) - Part I Effects of open-angle - (임의의 경계조건을 갖는 철근 콘크리트 선형판의 해석 -제1보 개각의 영향)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.94-103
    • /
    • 1991
  • This study was carried out to investigate the engineering characteristics of the R.C circular ring sector plate with various boundary conditions and then to propose a rational and paraical method for application of finite element method to R.C structures. The stiffness matrix of the circular ring sector plate was obtained by using the multi-base coordinate system in which the base-coordinate systems were constructed for each nodal point of the quadrilateral element in order to reflect the complicated boundary conditions conveniently and correctly. The R.C element stiffness matrix was constructed by adding the stiffness coefficients of the steel-bar element into the plate bending element stiffness matrix. Herein, the steel-bar element was treated as the common beam element. Using the above method, the effects of steel-bar can be considered without increasing of the numbers of element and nodal points.

  • PDF

Frequency-Dependent Element Matrices for Vibration Analysis of Piping Systems (배영계의 진동해소를 위한 주파수종속 요표행렬)

  • 양보석;안영홍;최원호
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This paper presents an approach for the derivation of frequency-dependent element matrices for vibration analysis of piping systems containing a moving medium. The dynamic stiffness matrix is deduced from transfer matrix, and, in turn, the frequency-dependent element matrices are derived. Numerical examples show that method gives more accurate results than those obtained using the conventional static shape function based element matrices.

  • PDF