• Title/Summary/Keyword: Electrostatic current

Search Result 205, Processing Time 0.026 seconds

Experimental Investigation of the Electrostatic Discharge(ESD) Damage in Packaged Semiconductor Devices (패키지 반도체소자의 ESD 손상에 대한 실험적 연구)

  • Kim, Sang-Ryull;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipments need to be more alert to the problem of electrostatic discharges(ESD). In order to analyze damage characteristics of semiconductor device damaged by ESD, this study adopts a new charged-device model(CDM), field-induced charged model(FCDM) simulator that is suitable for rapid, routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. High voltage applied to the device under test is raised by the field of non-contacting electrodes in the FCDM simulator, which avoids premature device stressing and permits a faster test cycle. Discharge current and time are measured and calculated. The characteristics of electrostatic attenuation of domestic semiconductor devices are investigated to evaluate the ESD phenomena in the semiconductors. Also, the field charging mechanism, the device thresholds and failure modes are investigated and analyzed. The damaged devices obtained in the simulator are analyzed and evaluated by SEM. The results obtained in this paper can be used to prevent semiconductor devices form ESD hazards and be a foundation of research area and industry relevant to ESD phenomena.

Simulation of Charging Process in Forming Electret for Sensor Material (센서재료용 일렉트렛트 형성에 대전과정 시뮬레이션)

  • Park, Geon-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.185-188
    • /
    • 2011
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current(TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method(FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Approach to Characterization of a Diode Type Corona Charger for Aerosol Size Measurement

  • Intra Panich;Tippayawong Nakorn
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.196-203
    • /
    • 2005
  • A semi-empirical method to determine the electrostatic characteristics of a diode type corona aerosol charger based on ion current measurement and electrostatic charging theory was presented. Results from mathematical model were in agreement with those from experimental investigation of the charger. Current-voltage characteristics, $N_{i}t$ product and charge distribution against aerosol size were obtained. It was shown that the space charge was significant and must be taken into account at high ion number concentration and low flow rate. Additionally, significant particle loss was evident for particles smaller than 20 nm in diameter where their electrical mobility was high. Increase in charging efficiency may be achieved by introducing surrounding sheath flow and applying AC high voltage. Overall, the approach was found to be useful in characterizing the aerosol charger.

Analysis of Characteristics on the Static Electricity by Streaming Electrification (유동대전에 의한 정전기 특성 분석)

  • Kim, Gil-Tae;Lee, Jae-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.42-46
    • /
    • 2005
  • The static electricity by thinner flow and discharge energy is investigated experimentally for the purpose of preventing the electrostatic discharge and damage. Test system for evaluating streaming electrification consists of a teflon pipe, a reservoir tank a pump, flowmeters and an electrometer. When dielectric liquid flows through a pipe from one vessel to another, the potential difference generated in the collecting vessel is due to the accumulation of charges. These charges result from the convection of a part of the electrical double layer existing in the tube at the contact between the liquid and the inner wall. When the fluid velocity increases, the electric current increases proportionally. The charging current and accumulated charges by streaming electrification at the thinner velocity of 40cm/s are measured a range of 5 nA and $0.27{\mu}C$ respectively. This amount of static discharge energy generated by streaming electrification is enough to ignite flammable solvent. Therefore surface electric potential should decrease by using electrostatic shielding and ground.

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

Prediction and Measurement of Induction Phenomena in the 765 kV Double Circuit Transmission Line operated with two voltage grades (765 kV 송전선로에서의 이종 전압등급 병행 운전시의 유도현상 예측 및 실측 결과)

  • Kwak, J.S.;Kang, Y.W.;Shim, E.B.;Jeon, M.R.;Woo, J.W.;Bang, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The western route of KEPCO's 765 kV transmission line has been tentatively operating as 345 kV voltage before commercial operation. KEPCO decided to operate the 765 kV line for commercial operation after completing the test operation of 765 kV substation in 2002. In the process of energizing the line as 765 kV voltage, double circuit transmission line will be operated with two voltage grades of 765 kV and 345 kV. As the earthing switches are installed on both ends of the line, electrostatic induction voltage and electromagnetic induction current were calculated prior to the line energizing in order to confirm the ratings. The induced voltage and current are important for the maintenance of the parallel circuit. This paper presents the simulation results of electrical phenomena such as electrostatic induction voltage and electromagnetic induction current from the parallel line. The transmission line was modeled by EMTP (Electro-Magnetic Transient Program). The simulation results were compared with the measured results at the field.

  • PDF

High Current Behavior and Double Snapback Mechanism Analysis of Gate Grounded Extended Drain NMOS Device for ESD Protection Device Application of DDIC Chip (DDIC 칩의 정전기 보호 소자로 적용되는 GG_EDNMOS 소자의 고전류 특성 및 더블 스냅백 메커니즘 분석)

  • Yang, Jun-Won;Kim, Hyung-Ho;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2013
  • In this study, the high current behaviors and double snapback mechanism of gate grounded_extended drain n-type MOSFET(GG_EDNMOS) device were analyzed in order to realize the robust electrostatic discharge(ESD) protection performances of high voltage operating display driver IC(DDIC) chips. Both the transmission line pulse(TLP) data and the thermal incorporated 2-dimensional simulation analysis as a function of ion implant conditions demonstrate a characteristic double snapback phenomenon after triggering of bipolar junction transistor(BJT) operation. Also, the background carrier density is proven to be a critical factor to affect the high current behavior of the GG_EDNMOS devices.

Improvement of Current Uniformity by Adjusting Ohmic Resitivity on the Surface in Light Emitting Diodes (발광 다이오드에서 분균일 전극의 Ohmic특성을 이용한 전류분포 균일도 향상)

  • Hwang, Seong-Min;Yun, Ju-Seon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.93-94
    • /
    • 2008
  • In order to suppress the current crowding in light emitting diodes (LEDs) grown on sapphire substrate, the effect of nonuniform contact resistivity between TME layer and p-GaN layer on the LED surface was theoretically investigated. The analysis results showed that current crowding occurring around p-electrode could be considerably improved, which in turn would be helpful to improve the electrostatic discharge (ESD) characteristic.

  • PDF

A Design of Peak Current-mode DC-DC Buck Converter with ESD Protection Devices (ESD 보호 소자를 탑재한 Peak Current-mode DC-DC Buck Converter)

  • Park, Jun-Soo;Song, Bo-Bae;Yoo, Dae-Yeol;Lee, Joo-Young;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • In this paper, dc-dc buck converter controled by the peak current-mode pulse-width-modulation (PWM) presented. Based on the small-signal model, we propose the novel methods of the power stage and the systematic stability designs. To improve the reliability and performance, over-temperature and over-current protection circuits have been designed in the dc-dc converter systems. To prevent electrostatic An electrostatic discharge (ESD) protection circuit is proposed. The proposed dc-dc converter circuit exhibits low triggering voltage by using the gate-substrate biasing techniques. Throughout the circuit simulation, it confirms that the proposed ESD protection circuit has lower triggering voltage(4.1V) than that of conventional ggNMOS (8.2V). The circuit simulation is performed by Mathlab and HSPICE programs utilizing the 0.35um BCD (Bipolar-CMOS-DMOS) process parameters.