• Title/Summary/Keyword: Electrostatic Separation

Search Result 68, Processing Time 0.03 seconds

Study on Reduction Unburned Carbon Contents in Low Quality Fly Ash from Vietnam (베트남 저품위 비산재의 미연탄소 함량 저감 연구)

  • Kim, Keeseok;Lee, Jaewon;Lee, Dongwon;Min, Kyongnam
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.37-47
    • /
    • 2020
  • According to Vietnam government establishes additional thermal power plant, processing the coal ash from power plant is urgent issue. This study targeted reducing unburned carbon contents in low quality fly ash to below 6% that according to international standards. As a result, the unburned carbon contents of low quality fly ash was high and irregular as 5.3~23.6%, and it was possible to reduce unburned cabon contents to under 6%, in case of unburned carbon contents below 9.8% ashes using air classification, in case of unburned carbon contents below 23.6% ashes using combined process composed of air classification and electrostatic separation.

Innovative Technology for Removal of Dispersants used in Oil Spill Remediation Using the Magnetic Separation (자성 분리를 이용한 해상 유류오염제어에 사용되는 유화제를 제거하는 새로운 기술에 대한 연구)

  • Chun, Chan-Lan;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.679-688
    • /
    • 2000
  • Dispersants, which are used to break water-in-oil emulsions and to remediate oil-spills, are another water pollutants. In this study, magnetic separation technology was applied to remove dispersants from the sea. Magnetite and maghemite were used as magnetic sorbents and SDDBS, an anionic surfactant and Triton X-100, a nonionic surfactant, were employed as dispersants. Batch experiments were undertaken to study the sorption capacity and sorption equilibrium, and water-bath experiments were conducted to simulate the real situation and to describe the recovery of magnetic particles by the permanent magnet or electromagnet. Maghemite has rather constant removal efficiency for dispersants, regardless of surfactant species. On the other hand, removal efficiency by magnetite is higher for anionic surfactant than maghemite and is higher in distilled water than in seawater which contains more ions. The sorption of dispersants to magnetite is explained by electrostatic attraction and that of maghemite is described not only by electrostatic attraction, but also by structural characteristics that provide high sorption ability and surface condition. Water bath experimental results showed that recovery efficiency of magnetic particle after sorption for dispersants is nearly 100%. It is suggested that this magnetic separation technology is an effective way of dispersant removal because of short operating time, high sorption capacity, and high recovery efficiency of sorbents.

  • PDF

Recovery of PET from Final Plastic Wastes using HDPE Cyclone Charger (HDPE 싸이클론 하전장치(荷電裝置)를 이용한 종말품(終末品) 폐(廢)플라스틱으로부터 PET의 회수(回收))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.51-56
    • /
    • 2007
  • Plastics are widely used in everyday life as very useful material. In Korea, about 4 million tons of plastic wastes are generated annually. However, recycling ratio is below 30%, and most of plastic wastes are disposed by landfill and incineration. Hence, the development of material separation technique that can recycle plastic wastes is a necessary situation. In this study, Triboelectrostatic separation for recovery of PET from final plastic wastes obtained from the sink product after wet-type gravity separation has been carried out. In the charging properties, the charge polarity and charge density of PET and PVC were very effective with the tirbo-charger made of PP and HDPE with the decrease in relative humidity. In material separation using HDPE cyclone charger, a PET grade of 96.80% and a recovery of 85.0% were achieved at 30 kV and the splitter position -2cm from the center. In order to obtain PET grade of 98.5%, PET recovery should be sacrificed by 24% with moving the splitter from the center to -6cm position.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

A Study on the Effects of Reynolds Number and Damkohler Number in the Structure of Premixed Turbulent Flames (예혼합 난류화염구조에 미치는 레이놀즈 수와 담퀠러 수의 영향에 관한 연구)

  • 김준효;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-41
    • /
    • 1995
  • The structure of premixed tubulent flames in a constant-volume vessel was investigated using a schlieren method and microprobe method. The schlieren method was used to observe the flame structure qualitatively. The microprobe method, which detects a flamelet by detecting its flame potential signal, was used to investigate the deeper flame structure behind the flame front. The flame potential signal having one to six peaks was obtained in the case of turbulent flames, each of them being regarede as a flamelet existing in the flame zone. Based on this consideration, the flame propagation speed, the thickness of the flame zone, the number of flamelets and the separation distance between adjacent flamelets in the flame zone were measured. Moreover, the thickness of flamelet which could not be attempted in the conventional electrostatic probe method was also investigated. The experimental results of this work suggest the existence of "reactant islands" in the reaction zone, and show that the averaged number of flamelets increases with an increase in the turbulence intensity and/or a decrease in the Damkohler number. The mean thickness of flamelet in the case of turbulent flames was found to be about two times compared to laminar values.ar values.

  • PDF

Characteristics of ionic Wind in a DC Corona Discharge in Needle-to-punched plate Geometry (침 대 중공평판전극에서 직류코로나 방전에 의한 이온풍 특성)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Eom, Ju-Hong;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2003
  • Ionic wind is produced by a corona discharge when a DC high voltage is applied across the point-to-plane gap geometry. The corona discharge phenomena have been investigated in several beneficial application fields such as electrostatic cooling, ozone generation, electrostatic precipitation and electrostatic spraying. Recently ionic wind might be used in aerodynamic, for example, heat transfer, airflow modification, and etc. In this work, in order to analyze the control behavior of the velocity and amount of ionic wind produced by the positive DC corona discharges. The ionic wind velocity was measured as a function of the applied voltage, diameter of the punched hole on plate electrode and separation between the point-to-plate electrodes. As a results, the airflow is generated from the tip of needle to the plate electrode in the needle-to-punched-plate electrode systems. The ionic wind velocity is linearly increased with an increase in applied voltage and ranges from 1 to 3 m/sec at the locations of 100-200 mm from the punched-plate.

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

Development of Recycling Technology for Used Cables (폐전선 재활용 기술개발)

  • 양정일;오정완;최우진;황선국
    • Resources Recycling
    • /
    • v.3 no.2
    • /
    • pp.28-34
    • /
    • 1994
  • A part of used cables, such as electric and communication cables has already been recycled by using simple processing methods. However, it has been found that the main problems in recycling of the used cables are insufficient treatment of fine stranded wires and low recovery of copper by air separation process. It has been shown that copper can be effectively separated from the PE using a solvent treatment method. In the present study, the used communication wires having diameter of 0.4 mm are treated in the mixing solution of toluene and water at $86^{\circ}C$ for about 10 minutes. In the solvent treatment, the copper wires recovered have 10~15mm length, which are much longer than that of 1~2mm length copper wires recovered by air table concentration method used in current recycling plants. The process consisting of cutting, air separation and electrostatic separation would be recommendable for the treatment of mixed cables. In this investigation, fine copper powders can also efficiently be recovered from insulation materials using electrostatic separator at the conditions of 20~50RPM roller speed and 15~30KV high DC power.

  • PDF

Separation of PET and PVC by Flotation

  • Owada, Shuji;Yamamoto, Mika;Kanazaki, Motohiko
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.730-733
    • /
    • 2001
  • Separation of PET and PVC is a key technology to achieve effective plastics recycling but no efficient and economically feasible method has been developed yet. The application of flotation was investigated by many researchers but the causes of the selectivity were not clarified. This paper described the adsorption mechanism of wetting agents onto plastics, using the agents which have various polarity and hydrocarbon chain length. It was found that (1) hydrophobic interaction played a predominant role for the adsorption, (2) anionic wetting agents could be adsorbed onto negatively charged plastics with the polar radicals oriented outer part of the plastics, then often depressed plastics more effectively than cationic agents, and (3) PET and PVC could be separated with dodecyamine hydrochloride and sodium dodecyl- sulfonate in the concentration ranges of 1.0$\times$10$^{[-10]}$ $^{6}$ -5.0$\times$10$^{[-10]}$ $^{5}$ and 2.0$\times$10$^{[-10]}$ $^{6}$ -1.0$\times$10$^{[-10]}$ $^{5}$ mo1/1, respectively.

  • PDF

Formation and Physical Properties of Yogurt

  • Lee, W.J.;Lucey, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1127-1136
    • /
    • 2010
  • Yogurt gels are a type of soft solid, and these networks are relatively dynamic systems that are prone to structural rearrangements. The physical properties of yogurt gels can be qualitatively explained using a model for casein interactions that emphasizes a balance between attractive (e.g., hydrophobic attractions, casein cross-links contributed by calcium phosphate nanoclusters and covalent disulfide cross-links between caseins and denatured whey proteins) and repulsive (e.g., electrostatic or charge repulsions, mostly negative at the start of fermentation) forces. Various methods are discussed to investigate the physical and structural attributes of yogurts. Various processing variables are discussed which influence the textural properties of yogurts, such as total solids content, heat treatment, and incubation temperatures. A better understanding of factors contributing to the physical and structural attributes may allow manufacturers to improve the quality of yogurt.