Recovery of PET from Final Plastic Wastes using HDPE Cyclone Charger

HDPE 싸이클론 하전장치(荷電裝置)를 이용한 종말품(終末品) 폐(廢)플라스틱으로부터 PET의 회수(回收)

  • Published : 2007.10.27

Abstract

Plastics are widely used in everyday life as very useful material. In Korea, about 4 million tons of plastic wastes are generated annually. However, recycling ratio is below 30%, and most of plastic wastes are disposed by landfill and incineration. Hence, the development of material separation technique that can recycle plastic wastes is a necessary situation. In this study, Triboelectrostatic separation for recovery of PET from final plastic wastes obtained from the sink product after wet-type gravity separation has been carried out. In the charging properties, the charge polarity and charge density of PET and PVC were very effective with the tirbo-charger made of PP and HDPE with the decrease in relative humidity. In material separation using HDPE cyclone charger, a PET grade of 96.80% and a recovery of 85.0% were achieved at 30 kV and the splitter position -2cm from the center. In order to obtain PET grade of 98.5%, PET recovery should be sacrificed by 24% with moving the splitter from the center to -6cm position.

플라스틱은 아주 유용한 물질로서 우리 일상생활에 폭넓게 이용되고 있다. 국내에서는 약 400 만톤의 폐플라스틱이 발생되고 있지만 재활용율은 30% 이하로 대부분 소각이나 매립에 의해 처리되고 있다. 따라서 폐플라스틱을 재활용할 수 있는 재질분리 기술개발 필요한 실정이다. 본 연구에서는 폐플라스틱 종말품으로부터 PET 회수를 위한 마찰하전 정전선별이 수행되었다. 하전특성 연구결과에 의하면, PET와 PVC의 하전극성과 하전량은 HDPE와 PP의 하전물질 그리고 상대습도가 낮을수록 효과적이었다. HDPE 싸이클론 하전장치를 이용한 재질분리 실험결과, PET의 품위와 회수율은 전극전압 30 kV 이상, 분리대위치 -2cm의 조건에서 각각 96.8%와 85.0%로 얻어졌으며, 분리대의 위치(-6cm)에 따라 PET 회수율이 24% 감소하지만 품위를 98.5%까지 분리할 수 있는 기술을 개발하였다.

Keywords

References

  1. International Workshop on Extended Producer Responsibility (EPR), Current state of EPR-based regulations and policies on recycling products at domestic and international level, June 27, Seoul, Korea (2003)
  2. Jeon, H.S., Park, C.H., Kim, B.G., Park, J.K., 2006: The development of electrostatic separation technique for recycling of life circles waste plastic, J. Korean lust. Resour. Recy, 15, pp28-36
  3. Reid, L. W., 1996: Plastic incineration versus recycling: a comparison of energy and landfill cost savings, J. Hazard. Mater, 47, pp295-302 https://doi.org/10.1016/0304-3894(95)00117-4
  4. Park, C.H., Jeon, H.S., Park, J.K., 2006: A study on charging properties and triboelectric series of plastic by tribo-charging, Korea Inst. Geosci. Mater. Resour, 43, pp560-569
  5. Kelly, E. G., Sottiswood, D. J., 1989: The theory of electrostatic separations: a review, part. I Fundamentals, Miner. Eng, 2, pp33-46 https://doi.org/10.1016/0892-6875(89)90063-0
  6. Higashiyama, Y., Ujiie, Y., Asano, K., 1997: Triboelectrification of plastic particles on a vibrating feeder laminated with a plastic film, J. Electrostat, 42, pp.63-68 https://doi.org/10.1016/S0304-3886(97)00131-9
  7. Gente, V., et al, 2003: Electrical separation of plastics coming from special waste, Waste. Manage, 23, pp951-958 https://doi.org/10.1016/S0956-053X(03)00088-6
  8. Woodhead, S.R., Armour-Chelu, D.l, 2003: The influence of humidity, temperature and other variables on the electric charging characteristics of particulate aluminium hydroxide in gas-solid pipelines flows, J. Electrostat., 58, pp171-183 https://doi.org/10.1016/S0304-3886(03)00046-9
  9. J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, J. Hazard. Mater. B99 (2003) 243-263
  10. T.X. Li, H. Ban, J.C. Hower, J.M. Stencel, K.Saito, Dry triboelectrostatic separation of mineral particles: A potential application in space exploration, J. Electrostat. 47 (1999) 133-142 https://doi.org/10.1016/S0304-3886(99)00033-9
  11. G.L. Hearn, J.R. Ballard, The use of electrostatic techniques for the identification and sorting of waste packaging materials, Resour. Conserv. Recy. 44 (2005) 91-98 https://doi.org/10.1016/j.resconrec.2004.08.001
  12. W. Jing, M.J. Realff, Design and optimization of free-fall electrostatic separators for plastics recycling, AlChE. J. 49 (2003) 3138-3149 https://doi.org/10.1002/aic.690491214
  13. Amelia, L. Craighill, Powell, J. C, 1996: Lifecycle assessment and economic evaluation of recycling: a case study, Resour. Conserv. Recy, 17, pp75-96 https://doi.org/10.1016/0921-3449(96)01105-6
  14. Inculet, I. I. Castle, G. S. P. Brown, J. D., 1998: Electrostatic separation of plastics for recycling. Part. Sci. Technol, 16, pp. 91-100 https://doi.org/10.1080/02726359808906787
  15. Lowell, J., Rose-Innes, A. C., 1980: Contact electrification. Advances In Physics. 29, pp.947-1023 https://doi.org/10.1080/00018738000101466