• 제목/요약/키워드: Electrostatic Chuck

검색결과 30건 처리시간 0.02초

미세 전극 패턴을 갖는 알루미나 정전척을 이용한 LED용 사파이어 기판 흡착 연구 (A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern)

  • 김형주;신용건;안호갑;김동원
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.165-171
    • /
    • 2011
  • In this work, handling of sapphire substrate for LED by using an electrostatic chuck was studied. The electrostatic chuck consisted of alumina dielectric, which was doped with 1.2 wt% $TiO_2$. As the volume resistivity of alumina dielectric was decreased, the electrostatic force was increased by Johnsen-Rahbek effect. The narrower width and gap size of electrode led to the stronger electrostatic force. When alumina dielectric with $3.20{\times}10^{11}{\Omega}{\cdot}cm$ resistivity and 3 mm width/1.5 mm gap sized electrode was used, the strongest electrostatic force in this work was obtained, which value reached to ~14.46 gf/$cm^2$ at 2.5 kV for 4-inch sapphire substrate. This results show that alumina electrostatic chuck with low resistivity and fine electrode pattern is suitable for handling of sapphire substrate for LED.

정전척 표면의 온도 균일도 향상을 위한 냉매 유로 형상에 관한 연구 (Study on Coolant Passage for Improving Temperature Uniformity of the Electrostatic Chuck Surface)

  • 김대현;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.72-77
    • /
    • 2016
  • As the semiconductor production technology has gradually developed and intra-market competition has grown fiercer, the caliber of Si Wafer for semiconductor production has increased as well. And semiconductors have become integrated with higher density. Presently the Si Wafer caliber has reached up to 450 mm and relevant production technology has been advanced together. Electrostatic chuck is an important device utilized not only for the Wafer transport and fixation but also for the heat treatment process based on plasma. To effectively control the high calories generated by plasma, it employs a refrigerant-based cooling method. Amid the enlarging Si Wafers and semiconductor device integration, effective temperature control is essential. Therefore, uniformed temperature distribution in the electrostatic chuck is a key factor determining its performance. In this study, the form of refrigerant flow channel will be investigated for uniformed temperature distribution in electrostatic chuck.

세라믹 유전체 물질과 냉매 유로 형상에 따른 정전척 냉각에 관한 연구 (A Study on Electrostatic Chuck Cooling by Ceramic Dielectric Material and Coolant path)

  • 김대현;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.85-89
    • /
    • 2018
  • Temperature uniformity of a wafer in a semiconductor process is a very important factor that determines the overall yield. Therefore, it is very important to confirm the temperature characteristics of the chuck surface on which the wafer is lifted. The temperature characteristics of the chuck depend on the external heat source, the shape of the cooling channel inside the chuck, the material on the chuck surface, and so on. In this study, CFD confirms the change of temperature characteristics according to the stacking order of ceramic materials and inner coolant path on the chuck surface. Finally this study suggests the best cooling condition of electrostatic chuck.

정전척 표면의 세라믹물질 적층 순서에 따른 온도 특성에 관한 연구 (A Study on Temperature Characteristics according to Ceramic Material Stacking Sequence of Electrostatic Chuck Surface)

  • 장경민;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제16권3호
    • /
    • pp.116-120
    • /
    • 2017
  • Temperature uniformity of a wafer in a semiconductor process is a very important factor that determines the overall yield. Therefore, it is very important to confirm the temperature characteristics of the chuck surface on which the wafer is lifted. The temperature characteristics of the chuck depend on the external heat source, the shape of the cooling channel inside the chuck, the material on the chuck surface, and so on. In this study, CFD confirms the change of temperature characteristics according to the stacking order of ceramic materials on the chuck surface, and suggests the best lamination method.

  • PDF

증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구 (Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes)

  • 김성빈;민동균
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구 (A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis)

  • 이재영;장경민;민동균;강재규;성기현;김혜동
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

정전척 온도분포 개선을 위한 냉각수 관로 형상 (Coolant Path Geometry for Improved Electrostatic Chuck Temperature Variation)

  • 이기석
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.21-23
    • /
    • 2011
  • Uniformity of plasma etching processes critically depends on the wafer temperature and its distribution. The wafer temperature is affected by plasma, chucking force, He back side pressure and the surface temperature of ESC(electrostatic chuck). In this work, 3D mathematical modeling is used to investigate the influence of the geometry of coolant path and the temperature distribution of the ESC surface. The model that has the coolant path with less change of the cross-sectional area and the curvature shows low standard deviation of the ESC surface temperature distribution than the model with the coolant path of the larger surface area and more geometric change.

폴리이미드형 8인치 정전기척의 제조 (Fabrication of 8 inch Polyimide-type Electrostatic Chuck)

  • 조남인;박순규;설용태
    • 반도체디스플레이기술학회지
    • /
    • 제1권1호
    • /
    • pp.9-13
    • /
    • 2002
  • A polyimide-type electrostatic chuck (ESC) was fabricated for the application of holding 8-inch silicon wafers in the oxide etching equipment. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on top of thin coated copper substrates for the good electrical contacts, and the helium gas cooling technique was used for the temperature uniformity of the silicon wafers. The ESC was essentially working with an unipolar operation, which was easier to fabricate and operate compared to a bipolar operation. The chucking force of the ESC has been measured to be about 580 gf when the applied voltage was 1.5 kV, which was considered to be enough force to hold wafers during the dry etching processing. The employment of the ESC in etcher system could make 8% enhancement of the wafer processing yield.

  • PDF

Si-adhesive 층의 불량에 따른 정전척 온도분포 (Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck)

  • 이기석
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

최적 dechucking 시스템 구현에 관한 연구 (A Study on the Implementation of Optimized Dechucking System)

  • 서종완;서희석;신명철
    • 조명전기설비학회논문지
    • /
    • 제21권5호
    • /
    • pp.106-111
    • /
    • 2007
  • 반도체 공정에서 각 단계별 과정을 거친 후 dechucking시 wafer가 ESC(Electrostatic Chuck)로부터 방전되지 못하고, 잔류되어 있는 극성을 띤 전하(Electric charge)들에 의해 wafer와 ESC사이에 인력이 발생하여 wafer의 sliding, popping 및 wafer broken 등의 문제가 발생한다. 본 논문에서는 wafer와 ESC의 구성을 capacitor를 이용하여 modeling하고, PSpice를 사용하여 chucking system에 의한 wafer의 대전 현상을 모의하고 그 결과를 바탕으로 잔류전하를 방전시키기 위한 여러 가지 방법을 검토하여 최적의 잔류전하 제거 기법을 제시한다. 즉 별도의 전압원을 사용하여 (+)와 (-)를 교번하는 구형파를 인가함과 아울러 일정시간 동안 Plasma내에서 스위칭시킴으로써 ESC나 wafer에 charge되어 있는 극성을 띤 전하들을 중화(Neutralize) 시키도록 하였다. 그리고 이를 실제 하드웨어로 구현하여 실 공정에 적용한 결과를 제시한다.