• Title/Summary/Keyword: Electrophysiological

Search Result 327, Processing Time 0.029 seconds

Initial Experience with Total Thoracoscopic Ablation

  • Lee, Hee Moon;Chung, Su Ryeun;Jeong, Dong Seop
    • Journal of Chest Surgery
    • /
    • v.47 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Background: Recently, a hybrid surgical-electrophysiological (EP) approach for confirming ablation lines in patients with atrial fibrillation (AF) was suggested. The aim of this approach was to overcome the limitations of current surgery- and catheter-based techniques to yield better outcomes. Methods: Ten consecutive patients with AF underwent total thoracoscopic ablation (TTA) following transvenous catheter EP ablation (residual gap and cavotricuspid isthmus [CTI] ablation). Holter monitoring was performed 6 months postoperatively. Results: Ten patients (90% with persistent AF) underwent successful hybrid procedures, and there was no in-hospital mortality. An EP study was performed in 8 patients and showed that successful antral ablation in all pulmonary veins was achieved in 7 of them. The median follow-up duration was 7.63 months (range, 6.7 to 11.6 months). Nine patients underwent Holter monitoring 6 months postoperatively, and the results indicated an underlying sinus rhythm without AF, atrial flutter, or atrial tachycardia lasting more than 30 seconds in all of the patients. There was no recurrence of AF during follow-up. Conclusion: A hybrid approach that consists of TTA followed by transvenous catheter EP ablation (residual gap and CTI ablation) yielded excellent outcomes in our patient population. A hybrid approach should be considered in patients with a high risk of AF recurrence.

Effects of Hesperidin Are Not Associated with Changes in Basal Synaptic Transmission, Theta-burst LTP, and Membrane Excitability in CA1 Neuron

  • Baek, Jin-Hee;Kim, Jae-Ick;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.357-362
    • /
    • 2009
  • Hesperidin, the most abundant polyphenolic compound found in citrus fruits, has been known to possess neuroprotective, sedative, and anticonvulsive effects on the nervous system. In a recent electrophysiological study, it was reported that hesperidin induced biphasic change in population spike amplitude in hippocampal CA1 neurons in response to both single spike stimuli and theta-burst stimulation depending on its concentration. However, the precise mechanism by which hesperidin acts on neuronal functions has not been fully elucidated. Here, using whole-cell patch-clamp recording, we revealed that hesperidin did not affect excitatory synaptic activities such as basal synaptic transmission and theta-burst LTP. Moreover, in a current injection experiment, spike number, resting membrane potential and action potential threshold also remained unchanged. Taken together, these results indicate that the effects of hesperidin on the neuronal functions such as spiking activity might not be attributable to either modification of excitatory synaptic transmissions or changes in membrane excitability in hippocampal CA1 neuron.

Response State of EEG Wave Type on Visual Cortex According to Color Vision Target (색각 시표에 따른 시피질 뇌파의 반응 상태)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.5-9
    • /
    • 2000
  • The visual evoked potential was electrophysiological method for the identify of the EEG response on visual cortex. This test was objective test method on the eye function. This study was used the visual evoked potential for the objective color test. The subjects was a normal color function in Korean adults. The test condition was performed on the differens distance and illumination. According to convergence condition of color vision target. On the appearance of EEG wave of visual stimulation on visual cortex. The most EEG wave style was delta wave, and the next amount wave form was beta wave and theta wave, and the least EEG wave form was alpha wave. The histogram of amplitude of EEG wave form was almost non-Gaussian shape, and the phase diagram of amplitude was almost all linear shape. On the kinds of color vision target, the frequency of EEG wave style appeared a similar results.

  • PDF

Antagonists of NMDA Receptor, Calcium Channel and Protein Kinase C Potentiate Inhibitory Action of Morphine on Responses of Rat Dorsal Horn Neuron

  • Shin, Hong-Kee;Kim, Yeon-Suk;Jun, Jong-Hun;Lee, Seo-Eun;Kim, Jae-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.251-254
    • /
    • 2003
  • The present study was designed to examine whether the co-application of morphine with $Ca^{2+}$ channel antagonist $(Mn^{2+},\;verapamil)$, N-methyl-D-aspartate (NMDA) receptor antagonist (2-amino-5-phosphonopentanoic acid$[AP_5]$, $Mg^{2+}$) or protein kinase C inhibitor (H-7) causes the potentiation of morphine-induced antinociceptive action by using an in vivo electrophysiological technique. A single iontophoretic application of morphine or an antagonist alone induced weak inhibition of wide dynamic range (WDR) cell responses to iontophoretically applied NMDA and C-fiber stimulation. Although there was a little difference in the potentiating effects, the antinociceptive action of morphine was potentiated when morphine was iontophoretically applied together with $Mn^{2+}$, verapamil, $AP_5$, $Mg^{2+}$ or H-7. However, the potentiating action between morphine and each antagonist was not apparent, when the antinociceptive action evoked by morphine or the antagonist alone was too strong. These results suggest that the potentiating effect can be caused by the interaction between morphine and each antagonist in the spinal dorsal horn.

Functional significance of rSK2 N-terminal region revealed by electrophysiology and Preliminary Structural Studies

  • Narae Shin;Kang, Gil-boo;Eom, Soo-Hyun;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.41-41
    • /
    • 2003
  • Small conductance calcium-activated potassium channels (or SKCa channels) are potassium selective, voltage-independent, and activated by intracellular calcium concentration. These channels play important roles in excitable cells such as neuron in the central nervous system (Vergara et al., 1998). The activity of SKCa channels underlies the slow afterhyperpolarization that inhibits neuronal cell firing (Hille, 1991; Vergara et al.,1998). Until now, N-terminal region of rSK2 isn't characterized. To study the role of N-terminus, we constructed the N-terminal deletion mutant and characterized by electrophysiological means. Interestingly, N-terminal deletion mutant be trafficked to membrane couldn't evoke any ionic currents. Thus, N-terminal region has a role in functional rSK2 channel formation. To elucidate the function of N-terminal region, (His)6-conjugated protein was purified and filtrated by affinity column chromatography. Surprisingly, N-terminal region was shown in tetramer size that was supported by cross-linking result. Thus, we predicted that N-terminal region might be involved in the tetramerization of rSK2.

  • PDF

Linear/Non-Linear Tools and Their Applications to Sleep EEG : Spectral, Detrended Fluctuation, and Synchrony Analyses (컴퓨터를 이용한 수면 뇌파 분석 : 스펙트럼, 비경향 변동, 동기화 분석 예시)

  • Kim, Jong-Won
    • Sleep Medicine and Psychophysiology
    • /
    • v.15 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Sleep is an essential process maintaining the life cycle of the human. In parallel with physiological, cognitive, subjective, and behavioral changes that take place during the sleep, there are remarkable changes in the electroencephalogram (EEG) that reflect the underlying electro-physiological activity of the brain. However, analyzing EEG and relating the results to clinical observations is often very hard due to the complexity and a huge data amount. In this article, I introduce several linear and non-linear tools, developed to analyze a huge time series data in many scientific researches, and apply them to EEG to characterize various sleep states. In particular, the spectral analysis, detrended fluctuation analysis (DFA), and synchrony analysis are administered to EEG recorded during nocturnal polysomnography (NPSG) processes and daytime multiple sleep latency tests (MSLT). I report that 1) sleep stages could be differentiated by the spectral analysis and the DFA ; 2) the gradual transition from Wake to Sleep during the sleep onset could be illustrated by the spectral analysis and the DFA ; 3) electrophysiological properties of narcolepsy could be characterized by the DFA ; 4) hypnic jerks (sleep starts) could be quantified by the synchrony analysis.

  • PDF

Combining Neuroinformatics Databases for Multi-Level Analysis of Brain Disorders

  • Yu, Ha Sun;Bang, Joon;Jo, Yousang;Lee, Doheon
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.7.1-7.8
    • /
    • 2012
  • With the development of many methods of studying the brain, the field of neuroscience has generated large amounts of information obtained from various techniques: imaging techniques, electrophysiological techniques, techniques for analyzing brain connectivity, techniques for getting molecular information of the brain, etc. A plenty of neuroinformatics databases have been made for storing and sharing this useful information and those databases can be publicly accessed by researchers as needed. However, since there are too many neuroinformatics databases, it is difficult to find the appropriate database depending on the needs of researcher. Moreover, many researchers in neuroscience fields are unfamiliar with using neuroinformatics databases for their studies because data is too diverse for neuroscientists to handle this and there is little precedent for using neuroinformatics databases for their research. Therefore, in this article, we review databases in the field of neuroscience according to both their methods for obtaining data and their objectives to help researchers to use databases properly. We also introduce major neuroinformatics databases for each type of information. In addition, to show examples of novel uses of neuroinformatics databases, we represent several studies that combine neuroinformatics databases of different information types and discover new findings. Finally, we conclude our paper with the discussion of potential applications of neuroinformatics databases.

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E.;Kim, Do-Hyoung;Kim, Yong-In;Jones, Walton D.;Lee, J. Eugene
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.150-159
    • /
    • 2018
  • Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

Shengmaisan Regulates Pacemaker Potentials in Interstitial Cells of Cajal in Mice

  • Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.4
    • /
    • pp.36-42
    • /
    • 2013
  • Objectives: Shengmaisan (SMS) is a traditional Chinese medicine prescription widely used for the treatment of diverse organs in Korea. The interstitial cells of Cajal (ICCs) are pacemaker cells that play an important role in the generation of coordinated gastrointestinal (GI) motility. We have aimed to investigate the effects of SMS in the ICCs in the mouse small intestine. Methods: To dissociate the ICCs, we used enzymatic digestions from the small intestine in a mouse. After that, the ICCs were identified immunologically by using the anti-c-kit antibody. In the ICCs, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICCs. Results: The ICCs generated pacemaker potentials in the mouse small intestine. SMS produced membrane depolarization with concentration-dependent manners in the current clamp mode. Pretreatment with a $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, stopped the generation of the pacemaker potentials. In the case of $Ca^{2+}$-free solutions, SMS induced membrane depolarizations. However, when thapsigargin in a bath solution was applied, the membrane depolarization was not produced by SMS. The membrane depolarizations produced by SMS were inhibited by U-73122, an active phospholipase C (PLC) inhibitors. Furthermore, chelerythrine and calphostin C, a protein kinase C (PKC) inhibitors had no effects on SMS-induced membrane depolarizations. Conclusions: These results suggest that SMS might affect GI motility by modulating the pacemaker activity through an internal $Ca^{2+}$- and PLC-dependent and PKC-independent pathway in the ICCs.

Studies on the Modeling and Analysis of the EMG interference pattern signal (근전도 간섭패턴 신호의 모델링과 분석에 관한 연구)

  • Yoo, S.K.;Min, B.G.;Kim, J.W.;Kim, J.W.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.145-150
    • /
    • 1993
  • It is an important component of the diagnosis to research the morphological changes of EMG in pathological conditions. In order to provide an EMG signal resulting from a predetermined neuromuscular pathophysiology, we have initially developed a mathmatical model of electromyographic interference pattern(IP). It can be used to study the variation of the IP resulting from morphological and electrophysiological changes occurring in disease states, because the model computes the IP from the underlying fiber and muscle structure. We performed quantative analysis or the model output, focusing on IPs resulting from simulations of dystrophic fiber loss and the MU denervation and reinnervation typical of neuropathies. To discribe the characteristics of IPs associated with these pathologies, a set of frequency domain discriptors, activity, mobility, and complexity were used, as well as several measures of the spectral density function. These discriptors demonstrate distinct patterns of variation corresponding to morphological changes observed in disease states, and closely with results obtained from the classical method, turn/amp technique.

  • PDF