DOI QR코드

DOI QR Code

Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster

  • Yu, Kate E. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Do-Hyoung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yong-In (Center for Bioanalysis, Korea Research Institute of Standards and Science) ;
  • Jones, Walton D. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, J. Eugene (Center for Bioanalysis, Korea Research Institute of Standards and Science)
  • Received : 2017.11.17
  • Accepted : 2017.12.12
  • Published : 2018.02.28

Abstract

Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.

Keywords

References

  1. Ai, M., Blais, S., Park, J.Y., Min, S., Neubert, T.A., and Suh, G.S. (2013). Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J. Neurosci. 33, 10741-10749. https://doi.org/10.1523/JNEUROSCI.5419-12.2013
  2. Anholt, R.R., and Williams, T.I. (2010). The soluble proteome of the Drosophila antenna. Chem. Senses 35, 21-30. https://doi.org/10.1093/chemse/bjp073
  3. Bahk, S., and Jones, W.D. (2016). Insect odorant receptor trafficking requires calmodulin. BMC Biol. 14, 83. https://doi.org/10.1186/s12915-016-0306-x
  4. Bargmann, C.I. (2006). Comparative chemosensation from receptors to ecology. Nature 444, 295-301. https://doi.org/10.1038/nature05402
  5. Benton, R. (2015). Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol. Evol. 30, 590-600. https://doi.org/10.1016/j.tree.2015.07.009
  6. Benton, R., and Dahanukar, A. (2011). Electrophysiological recording from Drosophila olfactory sensilla. Cold Spring Harb. Protoc. 2011, 824-838.
  7. Benton, R., Sachse, S., Michnick, S.W., and Vosshall, L.B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4, e20. https://doi.org/10.1371/journal.pbio.0040020
  8. Benton, R., Vannice, K.S., and Vosshall, L.B. (2007). An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289-293. https://doi.org/10.1038/nature06328
  9. Carlson, J.R. (1996). Olfaction in Drosophila: from odor to behavior. Trends Genet. 12, 175-180. https://doi.org/10.1016/0168-9525(96)10015-9
  10. Carraher, C., Nazmi, A.R., Newcomb, R.D., and Kralicek, A. (2013). Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr. Purif. 90, 160-169. https://doi.org/10.1016/j.pep.2013.06.002
  11. Carraher, C., Dalziel, J., Jordan, M.D., Christie, D.L., Newcomb, R.D., and Kralicek, A.V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochem. Mol. Biol. 66, 31-41. https://doi.org/10.1016/j.ibmb.2015.09.010
  12. Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J., and Carlson, J.R. (1999). A novel family of divergent seventransmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327-338. https://doi.org/10.1016/S0896-6273(00)81093-4
  13. Couto, A., Alenius, M., and Dickson, B.J. (2005). Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535-1547. https://doi.org/10.1016/j.cub.2005.07.034
  14. Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. https://doi.org/10.1038/nbt.1511
  15. de Bruyne, M., Foster, K., and Carlson, J.R. (2001). Odor coding in the Drosophila antenna. Neuron 30, 537-552. https://doi.org/10.1016/S0896-6273(01)00289-6
  16. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A., and Carlson, J.R. (2003). Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827-841. https://doi.org/10.1016/S0896-6273(03)00094-1
  17. Elmore, T., Ignell, R., Carlson, J.R., and Smith, D.P. (2003). Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 23, 9906-9912. https://doi.org/10.1523/JNEUROSCI.23-30-09906.2003
  18. Fishilevich, E., and Vosshall, L.B. (2005). Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548-1553. https://doi.org/10.1016/j.cub.2005.07.066
  19. Fluegge, D., Moeller, L.M., Cichy, A., Gorin, M., Weth, A., Veitinger, S., Cainarca, S., Lohmer, S., Corazza, S., Neuhaus, E.M., et al. (2012). Mitochondrial Ca(2+) mobilization is a key element in olfactory signaling. Nat. Neurosci. 15, 754-762. https://doi.org/10.1038/nn.3074
  20. Gao, Q., and Chess, A. (1999). Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31-39. https://doi.org/10.1006/geno.1999.5894
  21. German, P.F., van der Poel, S., Carraher, C., Kralicek, A.V., and Newcomb, R.D. (2013). Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem. Mol. Biol. 43, 138-145. https://doi.org/10.1016/j.ibmb.2012.11.002
  22. Gingras, A.C., Gstaiger, M., Raught, B., and Aebersold, R. (2007). Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645-654. https://doi.org/10.1038/nrm2208
  23. Ha, T.S., Xia, R., Zhang, H., Jin, X., and Smith, D.P. (2014). Lipid flippase modulates olfactory receptor expression and odorant sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 111, 7831-7836. https://doi.org/10.1073/pnas.1401938111
  24. Halty-deLeon, L., Miazzi, F., Kaltofen, S., Hansson, B.S., and Wicher, D. (2016). The mouse receptor transporting protein RTP1S and the fly SNMP1 support the functional expression of the Drosophila odorant coreceptor Orco in mammalian culture cells. J. Neurosci. Methods 271, 149-153. https://doi.org/10.1016/j.jneumeth.2016.07.005
  25. Harmsen, M.M., and De Haard, H.J. (2007). Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77, 13-22. https://doi.org/10.1007/s00253-007-1142-2
  26. Hopf, T.A., Morinaga, S., Ihara, S., Touhara, K., Marks, D.S., and Benton, R. (2015). Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat. Commun. 6, 6077. https://doi.org/10.1038/ncomms7077
  27. Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. https://doi.org/10.1038/nprot.2008.211
  28. Jafari, S., Alkhori, L., Schleiffer, A., Brochtrup, A., Hummel, T., and Alenius, M. (2012). Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol. 10, e1001280. https://doi.org/10.1371/journal.pbio.1001280
  29. Jin, X., Ha, T.S., and Smith, D.P. (2008). SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. USA 105, 10996-11001. https://doi.org/10.1073/pnas.0803309105
  30. Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H., and Vosshall, L.B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714. https://doi.org/10.1016/j.neuron.2004.08.019
  31. Laughlin, J.D., Ha, T.S., Jones, D.N.M., and Smith, D.P. (2008). Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133, 1255-1265. https://doi.org/10.1016/j.cell.2008.04.046
  32. Leal, W.S. (2013). Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373-391. https://doi.org/10.1146/annurev-ento-120811-153635
  33. Lee, J.E., Sweredoski, M.J., Graham, R.L., Kolawa, N.J., Smith, G.T., Hess, S., and Deshaies, R.J. (2011). The steady-state repertoire of human SCF ubiquitin ligase complexes does not require ongoing Nedd8 conjugation. Mol. Cell Proteomics 10, M110 006460.
  34. Li, Z., Ni, J.D., Huang, J., and Montell, C. (2014). Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet. 10, e1004600. https://doi.org/10.1371/journal.pgen.1004600
  35. Liu, Y.C., Pearce, M.W., Honda, T., Johnson, T.K., Charlu, S., Sharma, K.R., Imad, M., Burke, R.E., Zinsmaier, K.E., Ray, A., et al. (2014). The Drosophila melanogaster phospholipid flippase dATP8B is required for odorant receptor function. PLoS Genet. 10, e1004209. https://doi.org/10.1371/journal.pgen.1004209
  36. Lundin, C., Kall, L., Kreher, S.A., Kapp, K., Sonnhammer, E.L., Carlson, J.R., Heijne, G., and Nilsson, I. (2007). Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett. 581, 5601-5604. https://doi.org/10.1016/j.febslet.2007.11.007
  37. Missbach, C., Dweck, H.K., Vogel, H., Vilcinskas, A., Stensmyr, M.C., Hansson, B.S., and Grosse-Wilde, E. (2014). Evolution of insect olfactory receptors. Elife 3, e02115.
  38. Mukunda, L., Miazzi, F., Sargsyan, V., Hansson, B.S., and Wicher, D. (2016). Calmodulin Affects Sensitization of Drosophila melanogaster Odorant Receptors. Front. Cell Neurosci. 10, 28.
  39. Nakagawa, T., Pellegrino, M., Sato, K., Vosshall, L.B., and Touhara, K. (2012). Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7, e32372. https://doi.org/10.1371/journal.pone.0032372
  40. Nei, M., Niimura, Y., and Nozawa, M. (2008). The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet. 9, 951-963. https://doi.org/10.1038/nrg2480
  41. Neuhaus, E.M., Gisselmann, G., Zhang, W., Dooley, R., Stortkuhl, K., and Hatt, H. (2005). Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8, 15-17. https://doi.org/10.1038/nn1371
  42. Okada, N., Yamamoto, T., Watanabe, M., Yoshimura, Y., Obana, E., Yamazaki, N., Kawazoe, K., Shinohara, Y., and Minakuchi, K. (2011). Identification of TMEM45B as a protein clearly showing thermal aggregation in SDS-PAGE gels and dissection of its amino acid sequence responsible for this aggregation. Protein Expr. Purif 77, 118-123. https://doi.org/10.1016/j.pep.2011.01.011
  43. Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., and Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735-755. https://doi.org/10.1534/genetics.110.119917
  44. Rowland, A.A., and Voeltz, G.K. (2012). Endoplasmic reticulummitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607-625. https://doi.org/10.1038/nrm3440
  45. Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L.B., and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002-1006. https://doi.org/10.1038/nature06850
  46. Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect Biol. 5.
  47. Shanbhag, S.R., Muller, B., and Steinbrecht, R.A. (2000). Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod. Struct. Dev. 29, 211-229. https://doi.org/10.1016/S1467-8039(00)00028-1
  48. Smart, R., Kiely, A., Beale, M., Vargas, E., Carraher, C., Kralicek, A.V., Christie, D.L., Chen, C., Newcomb, R.D., and Warr, C.G. (2008). Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem. Mol. Biol. 38, 770-780. https://doi.org/10.1016/j.ibmb.2008.05.002
  49. Tanaka, K., Uda, Y., Ono, Y., Nakagawa, T., Suwa, M., Yamaoka, R., and Touhara, K. (2009). Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr. Biol. 19, 881-890. https://doi.org/10.1016/j.cub.2009.04.035
  50. Tsitoura, P., Andronopoulou, E., Tsikou, D., Agalou, A., Papakonstantinou, M.P., Kotzia, G.A., Labropoulou, V., Swevers, L., Georgoussi, Z., and Iatrou, K. (2010). Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells. PLoS One 5, e15428. https://doi.org/10.1371/journal.pone.0015428
  51. Turriziani, B., Garcia-Munoz, A., Pilkington, R., Raso, C., Kolch, W., and von Kriegsheim, A. (2014). On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology (Basel) 3, 320-332.
  52. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740. https://doi.org/10.1038/nmeth.3901
  53. Venthur, H., Mutis, A., Zhou, J.-J., and Quiroz, A. (2014). Ligand binding and homology modelling of insect odorant-binding proteins. Physiol. Entomol. 39, 183-198. https://doi.org/10.1111/phen.12066
  54. Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A., and Axel, R. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725-736. https://doi.org/10.1016/S0092-8674(00)80582-6
  55. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B., and Axel, R. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271-282. https://doi.org/10.1016/S0092-8674(03)00004-7
  56. Wicher, D., Schafer, R., Bauernfeind, R., Stensmyr, M.C., Heller, R., Heinemann, S.H., and Hansson, B.S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007-1011. https://doi.org/10.1038/nature06861
  57. Zhao, Y., Li, H., and Miao, X. (2015). Proteomic analysis of silkworm antennae. J. Chem. Ecol. 41, 1037-1042. https://doi.org/10.1007/s10886-015-0643-1

Cited by

  1. Antennal Proteome of the Solenopsis invicta (Hymenoptera: Formicidae): Caste Differences in Olfactory Receptors and Chemosensory Support Proteins vol.20, pp.5, 2020, https://doi.org/10.1093/jisesa/ieaa118