DOI QR코드

DOI QR Code

Combining Neuroinformatics Databases for Multi-Level Analysis of Brain Disorders

  • Yu, Ha Sun (Department of Bio and Brain Engineering, KAIST) ;
  • Bang, Joon (Winchester College) ;
  • Jo, Yousang (Department of Bio and Brain Engineering, KAIST) ;
  • Lee, Doheon (Department of Bio and Brain Engineering, KAIST)
  • Received : 2012.08.02
  • Accepted : 2012.08.10
  • Published : 2012.09.30

Abstract

With the development of many methods of studying the brain, the field of neuroscience has generated large amounts of information obtained from various techniques: imaging techniques, electrophysiological techniques, techniques for analyzing brain connectivity, techniques for getting molecular information of the brain, etc. A plenty of neuroinformatics databases have been made for storing and sharing this useful information and those databases can be publicly accessed by researchers as needed. However, since there are too many neuroinformatics databases, it is difficult to find the appropriate database depending on the needs of researcher. Moreover, many researchers in neuroscience fields are unfamiliar with using neuroinformatics databases for their studies because data is too diverse for neuroscientists to handle this and there is little precedent for using neuroinformatics databases for their research. Therefore, in this article, we review databases in the field of neuroscience according to both their methods for obtaining data and their objectives to help researchers to use databases properly. We also introduce major neuroinformatics databases for each type of information. In addition, to show examples of novel uses of neuroinformatics databases, we represent several studies that combine neuroinformatics databases of different information types and discover new findings. Finally, we conclude our paper with the discussion of potential applications of neuroinformatics databases.

Keywords

References

  1. Kotter, R. (2001). Neuroscience databases: tools for exploring brain structure-function relationships. Philos Trans R Soc Lond B Biol Sci 356, 1111-1120. https://doi.org/10.1098/rstb.2001.0902
  2. Yarkoni, T., Poldrack, R.A., Van Essen, D.C., and Wager, T.D. (2010). Cognitive neuroscience 2.0: building a cumulative science of human brain function. Trends Cogn Sci 14, 489-496. https://doi.org/10.1016/j.tics.2010.08.004
  3. French, L., and Pavlidis, P. (2007). Informatics in neuroscience. Brief Bioinform 8, 446-456. https://doi.org/10.1093/bib/bbm047
  4. Akil, H., Martone, M.E., and Van Essen, D.C. (2011). Challenges and opportunities in mining neuroscience data. Science 331, 708-712. https://doi.org/10.1126/science.1199305
  5. http://www.brain-development.org/.
  6. http://www.brainmuseum.org/index.html.
  7. http://www.med.harvard.edu/AANLIB/home.html.
  8. Laird, A.R., Lancaster, J.L., and Fox, P.T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics 3, 65-78. https://doi.org/10.1385/NI:3:1:065
  9. Mikula, S., Trotts, I., Stone, J.M., and Jones, E.G. (2007). Internet-enabled high-resolution brain mapping and virtual microscopy. Neuroimage 35, 9-15. https://doi.org/10.1016/j.neuroimage.2006.11.053
  10. http://connectomes.org/.
  11. Ascoli, G.A., Donohue, D.E., and Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27, 9247-9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007
  12. http://www.carmen.org.uk/.
  13. http://crcns.org/.
  14. http://openconnectomeproject.org/.
  15. Stephan, K.E., Kamper, L., Bozkurt, A., Burns, G.A., Young, M.P., and Kotter, R. (2001). Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos Trans R Soc Lond B Biol Sci 356, 1159-1186. https://doi.org/10.1098/rstb.2001.0908
  16. Bota, M., Dong, H.W., and Swanson, L.W. (2005). Brain architecture management system. Neuroinformatics 3, 15-48. https://doi.org/10.1385/NI:3:1:015
  17. Jesse Brown, J.R., and Susan Bookheimer. (2011). Networks in the Cloud: Web-based Neuroimaging Brain Network Analysis and Data Sharing. Organization for Human Brain Mapping, 2011, Quebec City, Quebec.
  18. Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30, 207-210. https://doi.org/10.1093/nar/30.1.207
  19. Rocca-Serra, P., Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Contrino, S., Vilo, J., Abeygunawardena, N., Mukherjee, G., Holloway, E., et al. (2003). ArrayExpress: a public database of gene expression data at EBI. C R Biol 326, 1075-1078. https://doi.org/10.1016/j.crvi.2003.09.026
  20. Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome- wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. https://doi.org/10.1038/nature05453
  21. Bohland, J.W., Bokil, H., Pathak, S.D., Lee, C.K., Ng, L., Lau, C., Kuan, C., Hawrylycz, M., and Mitra, P.P. (2010). Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112. https://doi.org/10.1016/j.ymeth.2009.09.001
  22. Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A.M., Pletikos, M., Meyer, K.A., Sedmak, G., et al. (2011). Spatio-temporal transcriptome of the human brain. Nature 478, 483-489. https://doi.org/10.1038/nature10523
  23. Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A., et al. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264-278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008
  24. Jack, C.R. Jr., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., J, L.W., Ward, C., et al. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27, 685-691. https://doi.org/10.1002/jmri.21049
  25. Kempton, M.J., Salvador, Z., Munafo, M.R., Geddes, J.R., Simmons, A., Frangou, S., and Williams, S.C. (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68, 675-690. https://doi.org/10.1001/archgenpsychiatry.2011.60
  26. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., and Buckner, R.L. (2007). Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19, 1498-1507. https://doi.org/10.1162/jocn.2007.19.9.1498
  27. Torrey, E.F., Webster, M., Knable, M., Johnston, N., and Yolken, R.H. (2000). The stanley foundation brain collection and neuropathology consortium. Schizophr Res 44, 151-155. https://doi.org/10.1016/S0920-9964(99)00192-9
  28. Taccioli, C., Tegner, J., Maselli, V., Gomez-Cabrero, D., Altobelli, G., Emmett, W., Lescai, F., Gustincich, S., and Stupka, E. (2011). ParkDB: a Parkinson's disease gene expression database. Database (Oxford) 2011, bar007.
  29. Lill, C.M., Roehr, J.T., McQueen, M.B., Kavvoura, F.K., Bagade, S., Schjeide, B.M., Schjeide, L.M., Meissner, E., Zauft, U., Allen, N.C., et al. (2012). Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet 8, e1002548. https://doi.org/10.1371/journal.pgen.1002548
  30. Allen, N.C., Bagade, S., McQueen, M.B., Ioannidis, J.P., Kavvoura, F.K., Khoury, M.J., Tanzi, R.E., and Bertram, L. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40, 827-834. https://doi.org/10.1038/ng.171
  31. Lill, C.M., Abel, O., Bertram, L., and Al-Chalabi, A. (2011). Keeping up with genetic discoveries in amyotrophic lateral sclerosis: the ALSoD and ALSGene databases. Amyotroph Lateral Scler 12, 238-249. https://doi.org/10.3109/17482968.2011.584629
  32. Lill, C.M., R.J., McQueen, M.B., Bagade, S., Schjeide, B.M., Zipp, F., and Bertram, L. The MSGene Database. Alzheimer Research Forum.
  33. Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., and Tanzi, R.E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39, 17-23. https://doi.org/10.1038/ng1934
  34. Tang, S., Zhang, Z., Kavitha, G., Tan, E.K., and Ng, S.K. (2009). MDPD: an integrated genetic information resource for Parkinson's disease. Nucleic Acids Res 37, D858-862. https://doi.org/10.1093/nar/gkn770
  35. Patel, C.J., Bhattacharya, J., and Butte, A.J. (2010). An Environment- Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS One 5, e10746. https://doi.org/10.1371/journal.pone.0010746
  36. http://www.cdc.gov/nchs/NHANES.htm.
  37. Gardner, D., Akil, H., Ascoli, G.A., Bowden, D.M., Bug, W., Donohue, D.E., Goldberg, D.H., Grafstein, B., Grethe, J.S., Gupta, A., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics 6, 149-160. https://doi.org/10.1007/s12021-008-9024-z
  38. http://neurolex.org/wiki/Main_Page.
  39. Bowden, D.M., Song, E., Kosheleva, J., and Dubach, M.F. (2012). NeuroNames: an ontology for the BrainInfo portal to neuroscience on the web. Neuroinformatics 10, 97-114. https://doi.org/10.1007/s12021-011-9128-8
  40. French, L., and Pavlidis, P. (2011). Relationships between gene expression and brain wiring in the adult rodent brain. PLoS Comput Biol 7, e1001049. https://doi.org/10.1371/journal.pcbi.1001049
  41. Wolf, L., Goldberg, C., Manor, N., Sharan, R., and Ruppin, E. (2011). Gene expression in the rodent brain is associated with its regional connectivity. PLoS Comput Biol 7, e1002040. https://doi.org/10.1371/journal.pcbi.1002040
  42. Park, B., Lee, W., and Han, K. (2012). Modeling the interactions of Alzheimer- related genes from the whole brain microarray data and diffusion tensor images of human brain. BMC Bioinformatics 13 Suppl 7, S10.