DOI QR코드

DOI QR Code

A Simple and Accurate Genotype Analysis of the motor neuron degeneration 2 (mnd2) Mice: an Easy-to-Follow Guideline and Standard Protocol Applicable to Mutant Mouse Model

  • Shin, Hyun-Ah (Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea) ;
  • Kim, Goo-Young (Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea) ;
  • Nam, Min-Kyung (Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea) ;
  • Goo, Hui-Gwan (School of Life Sciences and Biotechnology, Korea University) ;
  • Kang, Seongman (School of Life Sciences and Biotechnology, Korea University) ;
  • Rhim, Hyangshuk (Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea)
  • Received : 2012.09.04
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

The motor neuron degeneration 2 (mnd2) mice carry a point mutation of A to T nucleotide transversion at the serine 276 residue of high temperature requirement A2 (HtrA2), resulting in losses of an AluI restriction enzyme site (5'AGCT3') and the HtrA2 serine protease activity. Moreover, dysfunctions of HtrA2 are known to be intimately associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Thus, this mnd2 mouse is an invaluable model for understanding the physiological role of HtrA2 and its pathological role in neurodegenerative diseases. Nevertheless, many molecular and cellular biologists in this field have limited experience in working with mutant mouse models due to the necessity of acquired years of the special techniques and knowledges. Herein, using the mnd2 mouse model as an example, we describe easy-to-use standard protocols for web-based analyses of target genes, such as HtrA2, and a novel approach for simple and accurate PCR-AluI-RFLP-based genotype analysis of mnd2 mice. In addition, band resolution of AluI-RFLP fragments was improved in 12% polyacrylamide gel running in 1X Tris-Glycine SDS buffer. Our study indicates that this PCR-AluI-RFLP genotype analysis method can be easily applied by the molecular and cellular biologist to conduct biomedical science studies using the other mutant mouse models.

Keywords

References

  1. Nguyen, N., Judd, L.M., Kalantzis, A., Whittle, B., Giraud, A.S., and van Driel, I.R. (2011). Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. Am J Physiol Gastrointest Liver Physiol 300, G1-11. https://doi.org/10.1152/ajpgi.00343.2010
  2. Peters, L.L., Robledo, R.F., Bult, C.J., Churchill, G.A., Paigen, B.J., and Svenson, K.L. (2007). The mouse as a model for human biology: a resource guide for complex trait analysis. Nature reviews. Genetics 8, 58-69.
  3. Boyden, L.M., Choi, M., Choate, K.A., Nelson-Williams, C.J., Farhi, A., Toka, H.R., Tikhonova, I.R., Bjornson, R., Mane, S.M., Colussi, G., et al. (2012). Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98-102. https://doi.org/10.1038/nature10814
  4. Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., et al. (2011). The evolution of gene expression levels in mammalian organs. Nature 478, 343-348. https://doi.org/10.1038/nature10532
  5. Strowig, T., Henao-Mejia, J., Elinav, E., and Flavell, R. (2012). Inflammasomes in health and disease. Nature 481, 278-286. https://doi.org/10.1038/nature10759
  6. Brodski, C., Vogt Weisenhorn, D.M., and Dechant, G. (2002). Therapy of neurodegenerative diseases using neurotrophic factors: cell biological perspective. Expert Rev Neurother 2, 417-426. https://doi.org/10.1586/14737175.2.3.417
  7. Ahmad-Annuar, A., Tabrizi, S.J., and Fisher, E.M. (2003). Mouse models as a tool for understanding neurodegenerative diseases. Curr Opin Neurol 16, 451-458.
  8. Chaible, L.M., Corat, M.A., Abdelhay, E., and Dagli, M.L. (2010). Genetically modified animals for use in research and biotechnology. GMR 9, 1469-1482. https://doi.org/10.4238/vol9-3gmr867
  9. Van Dyke, T., and Jacks, T. (2002). Cancer modeling in the modern era: progress and challenges. Cell 108, 135-144. https://doi.org/10.1016/S0092-8674(02)00621-9
  10. Roths, J.B., Foxworth, W.B., McArthur, M.J., Montgomery, C.A., and Kier, A.B. (1999). Spontaneous and engineered mutant mice as models for experimental and comparative pathology: history, comparison, and developmental technology. Lab Anim Sci 49, 12-34.
  11. Price, D.L., Sisodia, S.S., and Borchelt, D.R. (1998). Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282, 1079-1083. https://doi.org/10.1126/science.282.5391.1079
  12. Matsushita, H., Vesely, M.D., Koboldt, D.C., Rickert, C.G., Uppaluri, R., Magrini, V.J., Arthur, C.D., White, J.M., Chen, Y.S., Shea, L.K., et al. (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400-404. https://doi.org/10.1038/nature10755
  13. Capecchi, M.R. (1989). The new mouse genetics: altering the genome by gene targeting. TIG 5, 70-76. https://doi.org/10.1016/0168-9525(89)90029-2
  14. Stacey, A., Schnieke, A., McWhir, J., Cooper, J., Colman, A., and Melton, D.W. (1994). Use of double-replacement gene targeting to replace the murine alpha-lactalbumin gene with its human counterpart in embryonic stem cells and mice. Mol Cell Biol 14, 1009-1016. https://doi.org/10.1128/MCB.14.2.1009
  15. Flint, J., and Mott, R. (2008). Applying mouse complex-trait resources to behavioural genetics. Nature 456, 724-727. https://doi.org/10.1038/nature07630
  16. Doyle, A., McGarry, M.P., Lee, N.A., and Lee, J.J. (2011). The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 21, 327-349
  17. Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., et al. (2012). A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337-342.
  18. Yang, H., Wang, J.R., Didion, J.P., Buus, R.J., Bell, T.A., Welsh, C.E., Bonhomme, F., Yu, A.H., Nachman, M.W., Pialek, J., et al. (2011). Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43, 648-655. https://doi.org/10.1038/ng.847
  19. Finger, J.H., Smith, C.M., Hayamizu, T.F., McCright, I.J., Eppig, J.T., Kadin, J.A., Richardson, J.E., and Ringwald, M. (2011). The mouse Gene Expression Database (GXD): 2011 update. Nucleic Acids Res 39, D835- 841. https://doi.org/10.1093/nar/gkq1132
  20. Raymond, C.S., and Soriano, P. (2006). Engineering mutations: deconstructing the mouse gene by gene. Dev Dynam 235, 2424-2436. https://doi.org/10.1002/dvdy.20845
  21. Jones, J.M., Albin, R.L., Feldman, E.L., Simin, K., Schuster, T.G., Dunnick, W.A., Collins, J.T., Chrisp, C.E., Taylor, B.A., and Meisler, M.H. (1993). mnd2: a new mouse model of inherited motor neuron disease. Genomics 16, 669-677. https://doi.org/10.1006/geno.1993.1246
  22. Weber, J.S., Jang, W., Simin, K., Lu, W., Yu, J., and Meisler, M.H. (1998). High-resolution genetic, physical, and transcript map of the mnd2 region of mouse chromosome 6. Genomics 54, 107-115. https://doi.org/10.1006/geno.1998.5496
  23. Jones, J.M., Datta, P., Srinivasula, S.M., Ji, W., Gupta, S., Zhang, Z., Davies, E., Hajnoczky, G., Saunders, T.L., Van Keuren, M.L., et al. (2003). Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721-727. https://doi.org/10.1038/nature02052
  24. Li, B., Hu, Q., Wang, H., Man, N., Ren, H., Wen, L., Nukina, N., Fei, E., and Wang, G. (2010). Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases. Cell Death Differ 17, 1773-1784. https://doi.org/10.1038/cdd.2010.55
  25. Faccio, L., Fusco, C., Chen, A., Martinotti, S., Bonventre, J.V., and Zervos, A.S. (2000). Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem 275, 2581-2588. https://doi.org/10.1074/jbc.275.4.2581
  26. Strauss, K.M., Martins, L.M., Plun-Favreau, H., Marx, F.P., Kautzmann, S., Berg, D., Gasser, T., Wszolek, Z., Muller, T., Bornemann, A., et al. (2005). Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet 14, 2099-2111. https://doi.org/10.1093/hmg/ddi215
  27. Plun-Favreau, H., Klupsch, K., Moisoi, N., Gandhi, S., Kjaer, S., Frith, D., Harvey, K., Deas, E., Harvey, R.J., McDonald, N., et al. (2007). The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 9, 1243-1252. https://doi.org/10.1038/ncb1644
  28. Ross, O.A., Soto, A.I., Vilarino-Guell, C., Heckman, M.G., Diehl, N.N., Hulihan, M.M., Aasly, J.O., Sando, S., Gibson, J.M., Lynch, T., et al. (2008). Genetic variation of Omi/HtrA2 and Parkinson's disease. Parkinsonism & Related Disorders 14, 539-543. https://doi.org/10.1016/j.parkreldis.2008.08.003
  29. Park, H.M., Kim, G.Y., Nam, M.K., Seong, G.H., Han, C., Chung, K.C., Kang, S., and Rhim, H. (2009). The serine protease HtrA2/Omi cleaves Parkin and irreversibly inactivates its E3 ubiquitin ligase activity. Biochem Biophys Res Comm 387, 537-542. https://doi.org/10.1016/j.bbrc.2009.07.079
  30. Gerhardt, E., Graber, S., Szego, E.M., Moisoi, N., Martins, L.M., Outeiro, T.F., and Kermer, P. (2011). Idebenone and resveratrol extend lifespan and improve motor function of HtrA2 knockout mice. PloS One 6, e28855. https://doi.org/10.1371/journal.pone.0028855
  31. Baker, B.M., and Haynes, C.M. (2011). Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 36, 254-261. https://doi.org/10.1016/j.tibs.2011.01.004
  32. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8, 613-621. https://doi.org/10.1016/S1097-2765(01)00341-0
  33. Park, D.W., Nam, M.K., and Rhim, H. (2011). The serine protease HtrA2 cleaves UCH-L1 and inhibits its hydrolase activity: implication in the UCH-L1-mediated cell death. Biochem Biophys Res Comm 415, 24-29. https://doi.org/10.1016/j.bbrc.2011.09.148
  34. Yoshino, J., and Imai, S. (2011). Mitochondrial SIRT3: a new potential therapeutic target for metabolic syndrome. Mol Cell 44, 170-171. https://doi.org/10.1016/j.molcel.2011.10.005
  35. Clausen, T., Kaiser, M., Huber, R., and Ehrmann, M. (2011). HTRA proteases: regulated proteolysis in protein quality control. Nature reviews. Mol Cell Biol 12, 152-162.
  36. Zhou, H., Chen, J., Lu, X., Shen, C., Zeng, J., Chen, L., and Pei, Z. (2012). Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. J Pineal Res 52, 120-127. https://doi.org/10.1111/j.1600-079X.2011.00926.x
  37. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., Helmberg, W., et al. (2005). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 33, D39-45.
  38. Gray, C.W., Ward, R.V., Karran, E., Turconi, S., Rowles, A., Viglienghi, D., Southan, C., Barton, A., Fantom, K.G., West, A., et al. (2000). Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. FEBS 267, 5699-5710.
  39. Tian, E.W., Yu, H., Zhang, D.Y., and Nason, J.D. (2011). Development of microsatellite loci for Blastophaga javana (Agaonidae), the pollinating wasp of Ficus hirta (Moraceae). Am J Bot 98, e41-43. https://doi.org/10.3732/ajb.1000432
  40. Justice, M.J., Siracusa, L.D., and Stewart, A.F. (2011). Technical approaches for mouse models of human disease. Disease Models & Mechanisms 4, 305-310. https://doi.org/10.1242/dmm.000901
  41. Smith, K.E., Boules, M., Williams, K., Fauq, A.H., and Richelson, E. (2011). The role of NTS2 in the development of tolerance to NT69L in mouse models for hypothermia and thermal analgesia. Behav Brain Res 224, 344-349. https://doi.org/10.1016/j.bbr.2011.06.014
  42. Peters, H., Nefedov, M., Sarsero, J., Pitt, J., Fowler, K.J., Gazeas, S., Kahler, S.G., and Ioannou, P.A. (2003). A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality. J Biol Chem 278, 52909- 52913. https://doi.org/10.1074/jbc.M310533200
  43. Chuang, L.Y., Yang, C.H., Tsui, K.H., Cheng, Y.H., Chang, P.L., Wen, C.H., and Chang, H.W. (2008). Restriction enzyme mining for SNPs in genomes. Anticancer Res 28, 2001-2007.
  44. Gautheron, V., Auffret, A., Mattson, M.P., Mariani, J., and Vernet-der Garabedian, B. (2009). A new and simple approach for genotyping Alzheimer's disease presenilin-1 mutant knock-in mice. J Neurosci Meth 181, 235-240. https://doi.org/10.1016/j.jneumeth.2009.05.009
  45. Ludes-Meyers, J.H., Kil, H., Parker-Thornburg, J., Kusewitt, D.F., Bedford, M.T., and Aldaz, C.M. (2009). Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PloS One 4, e7775. https://doi.org/10.1371/journal.pone.0007775
  46. Haraguchi, S., and Nakagawara, A. (2009). A simple PCR method for rapid genotype analysis of the TH-MYCN transgenic mouse. PloS One 4, e6902. https://doi.org/10.1371/journal.pone.0006902
  47. Shin, J.H., Hakim, C.H., Zhang, K., and Duan, D. (2011). Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction. Muscle Nerve 43, 283-286. https://doi.org/10.1002/mus.21873
  48. Lorenzi, H., Duvall, N., Cherry, S.M., Reeves, R.H., and Roper, R.J. (2010). PCR prescreen for genotyping the Ts65Dn mouse model of Down syndrome. Bio Techniques 48, 35-38. https://doi.org/10.2144/000113342
  49. Luther, R.J., Almodovar, A.J., Fullerton, R., and Wood, P.A. (2012). Acadl- SNP based genotyping assay for long-chain acyl-CoA dehydrogenase deficient mice. Mol Genet Metabol 106, 62-67 https://doi.org/10.1016/j.ymgme.2012.02.009
  50. Babaei, Z., Oormazdi, H., Rezaie, S., Rezaeian, M., and Razmjou, E. (2011). Giardia intestinalis: DNA extraction approaches to improve PCR results. Exp Parasitol 128, 159-162. https://doi.org/10.1016/j.exppara.2011.02.001
  51. Gita, S., Suneeta, M., Anjana, S., Niranjan, N., Sujata, M., and Pandey, R.M. (2011). C. trachomatis in female reproductive tract infections and RFLP-based genotyping: a 16-year study from a tertiary care hospital. Infect Dis Obstet Gynecol 2011, 548219.
  52. Haliassos, A., Chomel, J.C., Tesson, L., Baudis, M., Kruh, J., Kaplan, J.C., and Kitzis, A. (1989). Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res 17, 3606. https://doi.org/10.1093/nar/17.9.3606
  53. Ambrosone, C.B., and Harris, C.C. (2010). The development of molecular epidemiology to elucidate cancer risk and prognosis: a historical perspective. IJMEG 1, 84-91.

Cited by

  1. HtrA2 suppresses autoimmune arthritis and regulates activation of STAT3 vol.6, pp.1, 2016, https://doi.org/10.1038/srep39393
  2. Serine Protease HtrA2/Omi Deficiency Impairs Mitochondrial Homeostasis and Promotes Hepatic Fibrogenesis via Activation of Hepatic Stellate Cells vol.8, pp.10, 2012, https://doi.org/10.3390/cells8101119