• Title/Summary/Keyword: Electronics Units

Search Result 481, Processing Time 0.026 seconds

A Study on the 32 bit RISC/DSP Microprocessor Appropriate for Embedded Systems (내장형 시스템에 적합한 32 비트 RISC/DSP 마이크로프로세서에 관한 연구)

  • 유동열;문병인;홍종욱;이태영;이용석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.257-260
    • /
    • 1999
  • We have designed a 32-bit RISC microprocessor with 16/32-bit fixed-point DSP functionality. This processor, called YRD-5, combines both general-purpose microprocessor and digital signal processor (DSP) functionality using the reduced instruction set computer (RISC) design principles. It has functional units for arithmetic operation, digital signal processing (DSP) and memory access. They operate in parallel in order to remove stall cycles after DSP and load/store instructions with one or more issue latency cycles. High performance was achieved with these parallel functional units while adopting a sophisticated 5-stage pipeline structure and an improved DSP unit.

  • PDF

Dynamical Behavior of Autoassociative Memory Performaing Novelty Filtering

  • Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.3-10
    • /
    • 1998
  • This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto association for novelty. Networks of retinotopic topology having a one-to-one correspondence between and output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is obtained by subtracting the network output from the input vector. Then the presentation of a "familiar" pattern tends to evoke a null response ; but any anomalous component is enhanced. Such a behavior exhibits a promising feature for enhancement of weak signals in additive noise. As an analysis of the novelty filtering, this paper shows that the probability density function of the weigh converges to Gaussian when the input time series is statistically characterized by nonsymmetrical probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the neural network is converted into a first-order random differential equation. Based on this equation it is shown that the probability density function of the weight satisfies the Fokker-Planck equation. By solving the Fokker-Planck equation, it is found that the weight is Gaussian distributed with time dependent mean and variance.

  • PDF

THE CHARACTERISTICS OF OUTPUT FOR INVERTER TYPE X-RAY GENERATOR

  • Lim, Hong-Woo;Han, Euam-Yong;Baek, Hyung-Lae;Lee, Seong-Kil
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.431-435
    • /
    • 1998
  • This paper deals with the output characteristics of resonant PWM inverter type X-ray generators connected to different DC power units i.e. a single phase full bridge rectifier, a three phase full bridge rectifier and a power storage unit(PSU). The quality of X-ray beam depend on the pulsation waveforms of DC voltage supplied to the X-ray tulbe. In a X-ray generator, the waveforme of DC output voltage can be affected from hramonic distortion of DC input power. When a tube voltage waveform is distorded, the property of X-ray beam such as reproducibility, direcibility and doesage can be reduced. Therefore, we compared DC output waveforms and doesages with three thpe of DC power units and show the experimental results in this paper

  • PDF

Study of Cache Performance on GPGPU

  • Choi, Kyu Hyun;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.78-82
    • /
    • 2015
  • General-purpose graphics processing units (GPGPUs) provide tremendous computational and processing power. Despite the latency hiding mechanism, a GPU architecture requires high memory bandwidth and lower latency between computational units and the memory system. For this reason, the current GPU architecture has private L1 caches in each core and a shared L2 cache to increase performance by reducing memory latency. But in some cases, this CPU-like cache design is not suitable for GPGPUs. In this paper, we analyze detailed cache performance related to GPGPU application characteristics, and suggest technical alternatives for the GPGPU architecture as future work.

Thermal Unit Commitment using Tabu Search (Tabu 탐색법을 이용한 화력 발전기의 기동정지계획)

  • Cheon, Hui-Ju;Kim, Hyeong-Su;Hwang, Gi-Hyeon;Mun, Gyeong-Jun;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.70-77
    • /
    • 2000
  • This paper proposes a method of solving a unit commitment problem using tabu search (TS) which is heuristic algorithm. Ts is a local search method that starts from any initial solution and attempts to determine a better solution using memory structures. In this paper, to reduce the computation time for finding the optimal solution, changing tabu list size as intensification strategy and path relinking method as diversification strategy are proposed. To show the usefulness of the proposed method, we simulated for 10 units system and 110 units system. Numerical results show improvements in the generation costs and the computation time compared with priority list, genetic algorithm(GA), and hybrid GA.

  • PDF

Implementation of IQ/IDCT in H.264/AVC Decoder Using GP-GPU (GP-GPU를 이용한 H.264/AVC 디코더의 IQ/IDCT구현)

  • Jeong, Jun-Mo;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.76-81
    • /
    • 2010
  • The need for dedicated hardware continue to decrease as the mobile CPU's performance increases. But, there is a limit to a mobile CPU's performance. GP-GPU(General-Purpose computing on Graphics Processing Units) can improve performance without adding other dedicated hardware. This paper presents the implementation of Inverse Quantization, Inverse DCT and Color Space Conversion module in H.264/AVC decoder using GP-GPU for a mobile environments. The proposed architecture improves approximately 40% of performance when it use all the features.

A New Recurrent Neural Network Architecture for Pattern Recognition and Its Convergence Results

  • Lee, Seong-Whan;Kim, Young-Joon;Song, Hee-Heon
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.108-117
    • /
    • 1996
  • In this paper, we propose a new type of recurrent neural network architecture in which each output unit is connected with itself and fully-connected with other output units and all hidden units. The proposed recurrent network differs from Jordan's and Elman's recurrent networks in view of functions and architectures because it was originally extended from the multilayer feedforward neural network for improving the discrimination and generalization power. We also prove the convergence property of learning algorithm of the proposed recurrent neural network and analyze the performance of the proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeral database of Concordia University of Canada. Experimental results confirmed that the proposed recurrent neural network improves the discrimination and generalization power in recognizing spatial patterns.

  • PDF

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

A Review of Power Electronics Based Microgrids

  • Wang, Xiongfei;Guerrero, Josep M.;Blaabjerg, Frede;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.181-192
    • /
    • 2012
  • The increased penetration of Distributed Energy Resources (DER) is challenging the entire architecture of conventional electrical power system. Microgrid paradigm, featuring higher flexibility and reliability, becomes an attractive candidate for the future power grid. In this paper, an overview of microgrid configurations is given. Then, possible structure options and control methods of DER units are presented, which is followed by the descriptions of system controls and power management strategies for AC microgrids. Finally, future trends of microgrids are discussed pointing out how this concept can be a key to achieve a more intelligent and flexible power system.

Performance Evaluation of a Method to Improve Fairness in In-Vehicle Non-Destructive Arbitration Using ID Rotation

  • Park, Pusik;Igorevich, Rustam Rakhimov;Yoon, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5098-5115
    • /
    • 2017
  • A number of automotive electronics-safety, driver assistance, and infotainment devices-have been deployed in recent vehicles. This raises new challenges regarding in-vehicular network arbitration. A performance analysis of non-destructive arbitration has revealed a fairness issue. The arbitration prioritizes without collisions, despite multiple simultaneous transmissions; however, the performances of the highest priority node and the lowest priority node are very different. In this paper, an ID-rotation arbitration method to solve the arbitration-fairness problem is proposed. The proposed algorithm was applied to several engine control units (ECUs), including a controller area network (CAN) controller. Experimental results showed that the algorithm improved the fairness as well as the total throughput within a specific performance constraint.