DOI QR코드

DOI QR Code

A Review of Power Electronics Based Microgrids

  • Wang, Xiongfei (Dept. of Energy Technology, Aalborg University) ;
  • Guerrero, Josep M. (Dept. of Energy Technology, Aalborg University) ;
  • Blaabjerg, Frede (Dept. of Energy Technology, Aalborg University) ;
  • Chen, Zhe (Dept. of Energy Technology, Aalborg University)
  • Received : 2011.02.05
  • Accepted : 2011.11.24
  • Published : 2012.01.20

Abstract

The increased penetration of Distributed Energy Resources (DER) is challenging the entire architecture of conventional electrical power system. Microgrid paradigm, featuring higher flexibility and reliability, becomes an attractive candidate for the future power grid. In this paper, an overview of microgrid configurations is given. Then, possible structure options and control methods of DER units are presented, which is followed by the descriptions of system controls and power management strategies for AC microgrids. Finally, future trends of microgrids are discussed pointing out how this concept can be a key to achieve a more intelligent and flexible power system.

Keywords

References

  1. J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. P. Comech, R. Granadino, and J. I. Frau, "Distributed generation: Toward a new energy paradigm," IEEE Ind. Electron. Mag., Vol. 4, No. 1, pp. 52-64, Mar. 2010.
  2. European Commission-New ERA for electricity in Europe. Distributed Generation: Key Issues, Challenges and Proposed Solutions, EUR 20901, ISBN 92-894-6262-0, 2003.
  3. R. Lasseter, "Smart distribution: Coupled microgrids," IEEE Proc., Vol. 99, No. 6, pp. 1074-1082, Jun. 2011 https://doi.org/10.1109/JPROC.2011.2114630
  4. M. Barnes, J. Kondoh, H.Asano, J. Oyarzabal, G. Venkataramanan, R. Lasseter, N. Hatziargyriou, and T. Green, " Real-world microgrids - an overview," in Proc. IEEE SoSE, pp. 1-8, 2007.
  5. N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, "Microgrids," IEEE Power Energy Mag., Vol. 6, No. 4, pp. 78-94, Jul./Aug. 2007.
  6. Q. Zhang, R. Callanan, M. K. Das, S. H. Ryu, A. K. Agarwal, and J. W. Palmour, "SiC power devices for microgrids," IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 2889-2896, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2079956
  7. Z. Chen, J. M. Guerrero, and F. Blaabjerg, "A review of the state of the art of power electronics for wind turbines," IEEE Trans. Power Electron., Vol. 24, No. 8, pp. 1859-1875, Aug. 2009. https://doi.org/10.1109/TPEL.2009.2017082
  8. F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. Power Electron., Vol. 19, pp. 1184-1194, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833453
  9. S. B. Kjaer, J. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," IEEE Trans. Ind. Appl., Vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005. https://doi.org/10.1109/TIA.2005.853371
  10. S. Chakraborty and M. G. Simoes, "Advanced active filtering in a single high frequency AC microgrid," in Proc. IEEE PESC, pp. 191-197, 2005.
  11. S. Chakraborty, M. D. Weiss, and M. G. Simoes, "Distributed intelligent energy management system for a single-phase high-frequency ac microgrid," IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 1-13, Feb. 2007. https://doi.org/10.1109/TED.2006.889267
  12. J. Driesen and F. Katiraei, "Design for distributed energy resources," IEEE Power and Energy Mag., Vol. 6, No. 3, pp. 30-40, May/Jun. 2008.
  13. H. Kakigano, Y. Miura, and T. Ise, "Low-voltage bipolar-type DC microgrid for super high quality distribution," IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 3066-3075, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2077682
  14. K. Mizuguchi, S. Muroyama, Y. Kuwata, and Y. Ohashi, "A new decentralized dc power system for telecommunications systems," in Proc. IEEE INTELEC, pp. 55-62, 1990.
  15. C. C. Chan, "The state of art of electric and hybrid vehicles," Proc. IEEE, Vol. 90, No. 2, pp. 247-275, Feb. 2002 https://doi.org/10.1109/5.989873
  16. J. Ciezki and R. Ashton, "Selection and stability issues associated with a navy shipboard dc zonal electric distribution system," IEEE Trans. Power Del., Vol. 15, No. 2, pp. 665-669, Apr. 2000. https://doi.org/10.1109/61.853002
  17. D. Salomonsson and A. Sannino, "Low-voltage dc distribution system for commercial power systems with sensitive electronic loads," IEEE Trans. Power Del., Vol. 22, No. 3, pp. 1620-1627, Jul. 2007. https://doi.org/10.1109/TPWRD.2006.883024
  18. A. Kwasinski and C. N. Onwuchekwa, "Dynamic behavior and stabilization of DC microgrids with instantaneous constant-power loads," IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 822-834, Mar. 2011. https://doi.org/10.1109/TPEL.2010.2091285
  19. D. Salomonsson, L. Soder and A. Sannino, "Protection of low-voltage DC microgrids," IEEE Trans. Power Del., Vol. 24, No. 3, pp. 1045-1053, Jul., 2009. https://doi.org/10.1109/TPWRD.2009.2016622
  20. A. Sannino, G. Postiglione, and M. Bollen, "Feasibility of a dc network for commercial facilities," IEEE Trans. Ind. Appl., Vol. 39, No. 5, pp. 1499-1507, Sep./Oct., 2003. https://doi.org/10.1109/TIA.2003.816517
  21. U. Borup, B. Nielsen, and F. Blaabjerg, "Compensation of cable voltage drop and automatic identification of cable parameters in 400 Hz ground power units," IEEE Trans. Ind. Appl., Vol. 40, No. 5, pp. 1281-1286, Sep./Oct., 2004. https://doi.org/10.1109/TIA.2004.834110
  22. I. Takahashi and G. Su, "A 500 Hz power system-applications," in Proc. IEEE IAS, pp. 996-1002, 1989.
  23. Z. Jiang and X. Yu, "Hybrid DC- and AC-linked microgrids: towards integration of distributed energy resources," in Proc. IEEE Energy 2030, pp. 1-8, 2007.
  24. S. Barave and B. Chowdhury, "Hybrid AC/DC power distribution solution for future space applications," in Proc. IEEE PESGM, pp. 1-8, 2007.
  25. K. Hirose, T. Takeda, and A. Fukui, "Field demonstration on multiple power quality supply system in Sendai, Japan," in Proc. EPQU, pp. 1-6, 2007.
  26. F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, "Microgrids management," IEEE Power and Energy Mag., Vol. 6, No. 3, pp. 54 -65, May/Jun. 2008. https://doi.org/10.1109/MPE.2008.918702
  27. R. Lasseter, J. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado, and J. Roy, "CERTS microgrid laboratory test bed," IEEE Trans. Power Del., Vol. 26, No. 1, pp. 325-332, Jan. 2011. https://doi.org/10.1109/TPWRD.2010.2051819
  28. H. Nikkhajoei and R. Lasseter, "Distributed generation interface to the CERTS microgrid," IEEE Trans. Power Del., Vol. 24, No. 3, pp. 1598-1608, Jul. 2009. https://doi.org/10.1109/TPWRD.2009.2021040
  29. F. Peng, "Z source inverter," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar./Apr. 2003. https://doi.org/10.1109/TIA.2003.808920
  30. R. Gonzalez, E. Gubia, J. Lopez, and L. Marroyo, "Transformerless single-phase multilevel-based photovoltaic inverter," IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2694-2702, Jul. 2008. https://doi.org/10.1109/TIE.2008.924015
  31. O. Lopez, R. Teodorescu, F. Freijedo, and J. Dovalgandoy, "Leakage current evaluation of a single phase transformerless PV inverter connected to the grid," in Proc. IEEE APEC, pp. 907-912, 2007.
  32. M. Cavalcanti, K. de Oliveira, A. de Farias, F. Neves, G. Azevedo, and F. Camboim, "Modulation technique to eliminate leakage currents in transformerless three-phase photovoltaic systems," IEEE Trans. Ind. Electron., Vol. 57, No. 4, pp. 1360-1368, Apr. 2010. https://doi.org/10.1109/TIE.2009.2029511
  33. Y. Song, S. Chung, and P. Enjeti, "A current-fed link direct DC/AC converter with active harmonic filter for fuel cell power systems," in Proc. IEEE IAS, pp.123-128, 2004.
  34. S. Ponnaluri, G. Linhofer, J. Steinke, and P. Steimer, "Comparison of single and two stage topologies for interface of BESS or fuel cell system using the ABB standard power electronics building blocks," in Proc. EPE, pp. 1-9, 2005.
  35. S. Inoue and H. Akagi, "A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 535-542, Mar. 2007. https://doi.org/10.1109/TPEL.2006.889939
  36. S. Alepuz, S. Monge, J. Bordonau, J. Gago, D. Gonzalez, and J. Balcells, "Interfacing renewable energy sources to the utility grid using a threelevel inverter," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1504-1511, Oct. 2006. https://doi.org/10.1109/TIE.2006.882021
  37. L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, "State-of-charge (SOC) balancing control of a battery energy storage system based on a cascade PWM converter," IEEE Trans. Power Electron., Vol. 24, No. 6, pp. 1628-1636, Jun. 2009. https://doi.org/10.1109/TPEL.2009.2014868
  38. A. Watson, H. Dang, G. Mondal, J. Clare, and P. Wheeler, "Experimental implementation of a multilevel converter for power system integration," in Proc. IEEE ECCE, pp. 2232-2238, 2009.
  39. R. Tirumala, N. Mohan, and C. Henze, "Seamless transfer of gridconnected PWM inverters between utility- interactive and stand-alone modes," in Proc. IEEE APEC, pp.1081-1086, 2002.
  40. F. Pai, "An improved utility interface for microturbine generation system with stand-alone operation capabilities," IEEE Trans. Ind. Appl., Vol. 53, No. 5, pp. 1529-1537, Oct. 2006.
  41. R. Teodorescu and F. Blaabjerg, "Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1323-1332, Sep., 2004. https://doi.org/10.1109/TPEL.2004.833452
  42. H. Kim, T. Yu, and S. Choi, "Indirect current control algorithm for utility interactive inverters in distributed generation systems," IEEE Trans. Power Electron., Vol. 23, No. 3, pp.1342-1347, May 2008. https://doi.org/10.1109/TPEL.2008.920879
  43. J. Kim, J. M. Guerrero, P. Rodriguez, and R. Teodorescu, and K. Nam, "Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid," IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 689-701, Mar. 2011. https://doi.org/10.1109/TPEL.2010.2091685
  44. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. Timbus, "Overview of control and grid synchronization for distributed power generation system," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1398-1409, Oct. 2006. https://doi.org/10.1109/TIE.2006.881997
  45. A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, "Evaluation of current controllers for distributed power generation systems," IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 654-664, Mar. 2009. https://doi.org/10.1109/TPEL.2009.2012527
  46. D. Novotny and T. Lipo, Vector Control and Dynamics of AC Drives. Oxford University Press, 1996.
  47. M. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics. London, U.K.: Academic, 2002.
  48. S. Bhattacharya, A. Vetman, D. Divan, and R. Lorenz, "Flux-based active filter controller," IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 491-502, May/Jun. 1996. https://doi.org/10.1109/28.502159
  49. T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, " Direct power control of PWM converter without power-source voltage sensors," IEEE Trans. Ind. Appl., Vol. 34, No. 3, pp. 473-479, May/Jun. 1998. https://doi.org/10.1109/28.673716
  50. M. Malinowski, M. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, "Virtual flux based direct power control of three-phase PWM rectifiers," IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 1019-1027, Jul./Aug. 1998. https://doi.org/10.1109/28.936392
  51. M. Malinowski, M. Kazmierkowski, and A. Trzynadlowski, "A comparative study of control techniques for PWM rectifier in AC adjustable speed drives," IEEE Trans. Power Electron., Vol. 18, No. 6, pp. 1390-1396, Nov. 2003. https://doi.org/10.1109/TPEL.2003.818871
  52. J. Alonso-Martinez, J. E. Carrasco, and S. Arnaltes, "Table-based direct power control: a critical review for microgrid applications," IEEE Trans. Power Electron., Vol. 25, Vo. 12, pp. 2949-2961, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2087039
  53. D. Zhi, L. XU, and B. Williams, "Improved direct power control of grid-connected DC/AC converters," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1280-1292, May 2009. https://doi.org/10.1109/TPEL.2009.2012497
  54. S. Aurtenechea, M. Rodriguez, E. Oyarbide, and J. Torrealday, "Predictive control strategy for DC/AC converters based on direct power control," IEEE Trans. Ind. Electron., Vol. 54, No. 3, pp. 1267-1271, Jun. 2007.
  55. G. Saccomando, J. Svensson, and A. Sannimo, "Improving voltage disturbance rejection for variable-speed wind turbines," IEEE Trans. Energy Conv., Vol. 17, No. 3, pp. 422-428, Sep. 2002. https://doi.org/10.1109/TEC.2002.801989
  56. M. Prodanovic and T. Green, "High-quality power generation through distributed control of a power park microgrid," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1471-1482, Oct. 2006. https://doi.org/10.1109/TIE.2006.882019
  57. P. Rodriguez, A. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, "Flexible active power control of distributed power generation systems during grid faults," IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2583-2592, Oct. 2007. https://doi.org/10.1109/TIE.2007.899914
  58. P. Strauss and A. Engler, "AC coupled PV hybrid systems and microgrids-state of the art and future trends," in Proc. World Conf. on Photovoltaic Energy Conversion, pp. 2129-2134, 2001.
  59. J. Vasquez, R. Mastromauro, J. M. Guerrero, and M. Liserre, "Voltage support provided by a droop-controlled multifunctional inverter," IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4510-4519, Nov. 2009. https://doi.org/10.1109/TIE.2009.2015357
  60. A. Bergen, Power Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1986.
  61. C. Hernandez-Aramburo, T. Green, and N. Mugniot, "Fuel consumption minimization of a microgrid," IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 673-681, May/Jun. 2005. https://doi.org/10.1109/TIA.2005.847277
  62. M. Simoes, "Intelligent based hierarchical control power electronics for distributed generation systems," in Proc. IEEE PESGM, pp. 1-7, 2006.
  63. IEEE Task Force on Load Representation for Dynamic Performance, "Load representation for dynamic performance analysis," IEEE Trans. Power Syst., Vol. 8, No. 2, pp. 472-482, May 1993. https://doi.org/10.1109/59.260837
  64. N. Pogaku, M. Prodanovic, and T. Green, "Modeling, analysis and testing of an inverter-based microgrid," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 613-625, Mar. 2007. https://doi.org/10.1109/TPEL.2006.890003
  65. F. Katiraei, M. Iravani, and P. Lehn, "Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources," IET Gen., Transm., Distrib., Vol. 1, No. 3, pp. 369-378, May 2007. https://doi.org/10.1049/iet-gtd:20045207
  66. G. Diaz, C. Gonzalez-Moran, J. Gomez-Aleixandre, and A. Diez, "Composite loads in stand-alone inverter based microgrids-modeling procedure and effects on load margin," IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 894-905, May 2010. https://doi.org/10.1109/TPWRS.2009.2036360
  67. Z. Chen and Y. Hu, "Control of power electronic converters for distributed generation units" in Proc. IEEE IECON, pp. 1317-1322, 2005.
  68. Y. Mohamed and E. El-Saadany, "Adaptive decentralized droop controller to preserve power sharing stability of parallel inverters in distributed generation microgrids," IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2806-2816, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2005100
  69. H. Zeinelidin and J. Kirtley, "Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads," in Proc. IEEE PESGM, pp. 1-6, 2009.
  70. P. Kundur, Power system stability and control. New York: McGraw-Hill, 1994.
  71. J. M. Guerrero, L. Huang, and J. Uceda, "Control of distributed uninterruptible power supply systems," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 2845-2859, Aug. 2008. https://doi.org/10.1109/TIE.2008.924173
  72. T. Green and M. Prodanovic, "Control of inverter-based micro-grids," Electric Power Systems Research, Vol. 77, No. 9, pp. 1204-1213, Jul. 2007. https://doi.org/10.1016/j.epsr.2006.08.017
  73. S. Chiang, C. Lin, and C. Yen, "Current limitation control technique for parallel operation of UPS inverters," in Proc. IEEE PESC, pp. 1922-1926, 2004.
  74. M. Chandokar, D. Divan, and R. Adapa, "Control of parallel connected inverters in standalone ac supply systems," IEEE Trans. Ind. Appl., Vol. 29, No. 1, pp. 136-143, Jan. 1993. https://doi.org/10.1109/28.195899
  75. J. Lopes, C. Moreira and A. Madureira, "Defining control strategies for microgrids islanded operation," IEEE Trans. Power Syst., Vol. 21, No. 2, pp. 916-924, May 2006. https://doi.org/10.1109/TPWRS.2006.873018
  76. N. Gil and J. Lopes, "Hierarchical frequency control scheme for islanded multi-microgrids operation," in Proc. IEEE Power Tech, pp. 473-478, 2007.
  77. J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, and L. G. Vicuna, "Control strategy for flexible microgrid based on parallel line-interactive UPS systems," IEEE Trans. Ind. Electron., Vol. 56, No. 3, pp. 726-736, Mar. 2009. https://doi.org/10.1109/TIE.2008.2009274
  78. J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. Vicuna, and M. Castilla, "Hierarchical control of droop-controlled AC and DC microgrids- a general approach toward standardization," IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 158-172, Jan. 2011. https://doi.org/10.1109/TIE.2010.2066534
  79. A. Tuladhar, H. Jin, T. Unger, and K. Mauch, "Control of parallel inverters in distributed ac power systems with consideration of line impedance," IEEE Trans. Ind. Appl., Vol. 36, No. 1, pp. 131-138, Jan./Feb. 2000. https://doi.org/10.1109/28.821807
  80. M. Marwali, J. Jung, and A. Keyhani, "Control of distributed generation systems-Part II: Load sharing control," IEEE Trans. Power Electron., Vol. 19, No. 6, pp.1551-1561, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836634
  81. J. Matas, M. Castilla, L. G. Vicuna, J. Miret, and J. Vasquez, "Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme," IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 2993-3002, Dec. 2010. https://doi.org/10.1109/TPEL.2010.2082003
  82. J. M. Guerrero, J. Matas, L. G. Vicuna, M. Castilla, and J. Miret, "Wireless-control strategy for parallel operation of distributed-generation inverters," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1461-1470, Oct. 2006. https://doi.org/10.1109/TIE.2006.882015
  83. J. M. Guerrero, L. G. Vicuna, J. Matas, M. Castilla, and J. Miret, "A wireless-controller to enhance dynamic performance of parallel inverters in distributed generation systems," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1205-1213, Sep. 2006. https://doi.org/10.1109/TPEL.2004.833451
  84. D. De and V. Ramanarayanan, "Decentralized parallel operation of inverters sharing unbalanced and non-linear loads," IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 1126-1132, Dec. 2010.
  85. T. Lee, and P. Cheng, "Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1919-1927, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904200
  86. P. Cheng, C. Chen, T. Lee, and S. Kuo, "A cooperative imbalance compensation method for distributed-generation interface converters," IEEE Trans. Ind. Appl., Vol. 45, No. 2, pp. 805-815, Mar./Apr. 2009. https://doi.org/10.1109/TIA.2009.2013601
  87. K. Wada, H. Fujita, and H. Akagi, "Considerations of a shunt active filter based on voltage detection for installation on a long distribution feeder," IEEE Trans. Ind. Applicat., Vol. 38, pp. 1123-1130, Jul./Aug. 2002. https://doi.org/10.1109/TIA.2002.800584
  88. A. Tsikalakis and N. Hatziargyriou, "Centralized control for optimizing microgrids operation," IEEE Trans. Energy Conv., Vol. 23, No. 1, pp. 241-248, Mar. 2008. https://doi.org/10.1109/TEC.2007.914686
  89. L. Dimeas and N. Hatziargyriou, "Operation of a multi-agent system for microgrid control," IEEE Trans. Power Syst., Vol. 20, No. 3, pp. 1447-1455, Aug., 2005. https://doi.org/10.1109/TPWRS.2005.852060
  90. N. Hatziargyriou, A. Dimeas, S. Hatzivasiliadis, J. Jimeno, and J. Oyarzabal, "DB3: Decentralized control concepts," EU More Microgrid, Work Package B, Feb. 2008.

Cited by

  1. Power Quality Concerns in Implementing Smart Distribution-Grid Applications vol.8, pp.1, 2017, https://doi.org/10.1109/TSG.2016.2596788
  2. Stability Analysis of AC Microgrids Using Incremental Phasor Impedance Matching vol.43, pp.4, 2015, https://doi.org/10.1080/15325008.2014.985346
  3. Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: areview vol.11, pp.4, 2017, https://doi.org/10.1049/iet-rpg.2016.0500
  4. An overview of control approaches of inverter-based microgrids in islanding mode of operation vol.80, 2017, https://doi.org/10.1016/j.rser.2017.05.267
  5. Synthesis of Variable Harmonic Impedance in Inverter-Interfaced Distributed Generation Unit for Harmonic Damping Throughout a Distribution Network vol.48, pp.4, 2012, https://doi.org/10.1109/TIA.2012.2199955
  6. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources vol.74, 2016, https://doi.org/10.1016/j.automatica.2016.07.036
  7. Distributed stabilizing modular control for stand-alone microgrids 2017, https://doi.org/10.1016/j.apenergy.2017.07.085
  8. Secondary Voltage Control for Reactive Power Sharing in an Islanded Microgrid vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.329
  9. Conceptual Design of an Online Estimation System for Stigmergic Collaboration and Nodal Intelligence on Distributed DC Systems vol.17, pp.2, 2017, https://doi.org/10.4316/AECE.2017.02007
  10. Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and Resonance Damping in an Islanded Microgrid vol.50, pp.1, 2014, https://doi.org/10.1109/TIA.2013.2268734
  11. A Novel Cloud-Based Platform for Implementation of Oblivious Power Routing for Clusters of Microgrids vol.5, 2017, https://doi.org/10.1109/ACCESS.2016.2646418
  12. Enhanced Power Quality Controller in anAutonomous Microgrid by PSO Tuned PI Controller vol.10, pp.18, 2017, https://doi.org/10.17485/ijst/2017/v10i18/108925
  13. New Control Strategy for Three-Phase Grid-Connected LCL Inverters without a Phase-Locked Loop vol.13, pp.3, 2013, https://doi.org/10.6113/JPE.2013.13.3.487
  14. Parallel Operation of Microgrid Inverters Based on Adaptive Sliding-Mode and Wireless Load-Sharing Controls vol.15, pp.3, 2015, https://doi.org/10.6113/JPE.2015.15.3.741
  15. Postdisaster Electric Power Recovery Using Autonomous Vehicles vol.14, pp.1, 2017, https://doi.org/10.1109/TASE.2016.2614927
  16. An Optimal Energy Storage Control Strategy for Grid-connected Microgrids vol.5, pp.4, 2014, https://doi.org/10.1109/TSG.2014.2302396
  17. Power Controlling, Monitoring and Routing Center Enabled by a DC-Transformer † vol.10, pp.3, 2017, https://doi.org/10.3390/en10030403
  18. Control Methods and Objectives for Electronically Coupled Distributed Energy Resources in Microgrids: A Review vol.10, pp.2, 2016, https://doi.org/10.1109/JSYST.2013.2296075
  19. A Droop Method for High Capacity Parallel Inverters Considering Accurate Real Power Sharing vol.16, pp.1, 2016, https://doi.org/10.6113/JPE.2016.16.1.38
  20. A Robust Synchronization Method for Centralized Microgrids vol.51, pp.2, 2015, https://doi.org/10.1109/TIA.2014.2339391
  21. Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey vol.5, pp.2169-3536, 2017, https://doi.org/10.1109/ACCESS.2017.2758523
  22. Challenges of Microgrids in Remote Communities: A STEEP Model Application vol.11, pp.2, 2018, https://doi.org/10.3390/en11020432
  23. A Chance-Constraints-Based Control Strategy for Microgrids With Energy Storage and Integrated Electric Vehicles vol.9, pp.1, 2018, https://doi.org/10.1109/TSG.2016.2552173
  24. Multiphase Quasi-Z-Source DC–DC Converters for Residential Distributed Generation Systems vol.65, pp.10, 2018, https://doi.org/10.1109/TIE.2018.2801860
  25. Buck–Boost Dual-Leg-Integrated Step-Up Inverter With Low THD and Single Variable Control for Single-Phase High-Frequency AC Microgrids vol.33, pp.7, 2018, https://doi.org/10.1109/TPEL.2017.2742667
  26. Decentralised Active Power Control Strategy for Real-Time Power Balance in an Isolated Microgrid with an Energy Storage System and Diesel Generators vol.12, pp.3, 2019, https://doi.org/10.3390/en12030511
  27. Control Design, Stability Analysis and Experimental Validation of New Application of an Interleaved Converter Operating as a Power Interface in Hybrid Microgrids vol.12, pp.3, 2019, https://doi.org/10.3390/en12030437