• Title/Summary/Keyword: Electronic transition

Search Result 979, Processing Time 0.03 seconds

The Low Probability of Intercept RADAR Waveform Based on Random Phase and Code Rate Transition for Doppler Tolerance Improvement (도플러 특성 개선을 위한 랜덤 위상 및 부호율 천이 기반 저피탐 레이다 파형)

  • Lee, Ki-Woong;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.999-1011
    • /
    • 2015
  • In modern electronic warfare, RADAR is under constant threat of ECM(Electronic Counter Measures) signals from nearby jammers. The conventional linear frequency modulated(Linear-FM) waveform is easy to be intercepted to estimate its signal parameters due to its periodical phase transition. Recently, APCN(Advanced Pulse Compression Noise) waveform using random amplitude and phase transition was proposed for LPI(Low probability of Intercept). But random phase code signals such as APCN waveform tend to be sensitive to Doppler frequency shift and result in performance degradation during moving target detection. In this paper, random phase and code rate transition based radar waveform(RPCR) is proposed for Doppler tolerance improvement. Time frequency analysis is carried out through ambiguity analysis to validate the improved Doppler tolerance of RPCR waveform. As a means to measure the vulnerability of the proposed RPCR waveform against LPI, WHT(Wigner-Hough Transform) is adopted to analyze and estimate signal parameters for ECCM(Electronic Counter Counter Measures) application.

Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides (이차원 반도체 소재를 이용한 투명 태양전지 특성에 관한 연구)

  • Jwa, Tae-Hun;Hyun, Chul-Min;Kim, Min-Sik;Lee, Hyeok-ju;Ahn, Ji-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.186-190
    • /
    • 2016
  • In this study, we fabricated the transparent photovoltaic device using 2-dimensional transition-metal dichalcogenides and investigated the transparency and photovoltaic characteristics. P-n heterojunction was formed by mechanical exfoliation and aligned transfer method on the transparent sheet using n-type $MoS_2$ and p-type $WSe_2$. Our transparent photovoltaic device exhibited the open-circuit voltage of ~ 0.15 V and the short-circuit current of 0.48 nA under illumination of white light.

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Two dimensional Phase Transition of Liquid Crystal Film (액정박막에서의 2차원 상전이)

  • Jung, C.S.;Xue, J.Z.;Kim, M.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.119-121
    • /
    • 1993
  • Two dimensional phase transition and three dimensional propagation of layer structures of liquid crystal film are investigated by using surface second harmonic generation method. We have found a distinctive first order phase transition between a monolayer phase and a stable 3-layer phase of 8CB liquid crystal film.

  • PDF

Surface Segregation and Order of FeCo Alloy (FeCo 합금의 표면 편석과 질서도)

  • Han, Wone-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • The surface segregation and surface order near the order-disorder phase transition of FeCo alloy was studied through Monte Carlo simulation of an Ising type model Hamiltonian. The results showed that the proper choice of Hamiltonian parameters could reproduce the recent observation of surface order above the transition temperature and that the field term played dominant role.

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2171-2175
    • /
    • 2013
  • The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

Substitution Effect on Electronic Transition of Bi-substituted Benzyl-type Radicals: Symmetric Substitution

  • Ahn, Hyeon-Geun;Lee, Gi-Woo;Kim, Tae-Kyu;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1993-1995
    • /
    • 2007
  • A substitution effect on the electronic transition of bi-substituted benzyl-type radicals was discovered. The origin of the electronic D1 → D0 transition of benzyl-type radicals was red-shifted upon substitution to the benzene ring. For symmetric bi-substituted benzyl-type radicals, it was found that the predicted shift obtained from mono-substituted benzyl-type radicals agreed well with the observation. The reason for this agreement is believed that the substituent contributes independently to the electronic energy. The substitution effect was applied to the symmetric bi-substituted difluoro-, dichloro- and dimethylbenzyl radicals.

Ferroelectric Phase Transition of Lead Free (1-x)(Na0.5K0.5)NbO3-xLiNbO3 Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.297-300
    • /
    • 2012
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, i.e., NKN-LNx (x=0.0, 0.1, 0.2, 0.3, 0.4 mol) was prepared using the conventional solid state reaction method. The effects of LN mixing on the ferroelectric properties of NKN-LNx ceramics were studied using a dielectric constant and P-E (Polarization-electric field) measurements. Ferroelectricity was observed in the composition for x approximately varying between 0.0 and 0.4. Minimum remanent polarization $2P_r=5C/cm^2$ was achieved in the composition for x = 0.2. The ferroelectric phase transition temperature $T_C$ increased with increasing LN content. The ferroelectric phase transition of NKN-LNx ($x{\geq}0.1$) is a second-order phase transition, and that of NKN-LNx ($x{\leq}0.2$) is a first-order phase transition. These results indicate that the ferroelectric phase transition temperature of NKN-LNx change from that of second-order to weak first-order phase transition according to the LN content.

Fabrication of Superconducting Transition Edge Sensors based on Ti/Au Bilayer Formation (Ti/Au 이중층을 이용한 초전도 상전이 센서 제작)

  • Lee, Young-Hwa;Kim, Yong-Hamb
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.943-949
    • /
    • 2008
  • We report on the development of transition edge sensors for x-ray detection. The sensor technology was based on the fabrication of a superconducting film on a thin membrane. A bilayer of a superconductor, Ti, and a noble metal, Au, was e-beam evaporated on a micromachined SiNx. Another Au layer was evaporated on the two side edges of the bilayer in order not to be affected by structural imperfections at the boundaries. With the method described in the present report, the superconducting transition temperature of the device was consistently achieved to near 80 mK with a sharp transition. The energy spectrum ueasured with the device provided 37 eV FWHM for 5.9 x-rays. We also discuss the design and fabrication considerations as well as the performance of the device in detail.