• Title/Summary/Keyword: Electronic state

Search Result 3,078, Processing Time 0.027 seconds

The electrical properties and phase transition characteristics of amorphous $Ge_2Sb_2Te_5$ thin film (비정질 $Ge_2Sb_2Te_5$ 박막의 상변화에 따른 전기적 특성 연구)

  • Yang, Sung-Jun;Lee, Jae-Min;Shin, Kyung;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.210-213
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. Memory switching in chalcogenides is mostly a thermal process, which involves phase transformation from amorphous to crystalline state. The nonvolatile memory cells are composed of a simple sandwich (metal/chalcogenide/metal). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively.

  • PDF

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

Design of Ulta-short Fused Vertical Coupler Switches Composed of Two Sections (두 개의 영역으로 구성된 매우 짧은 길이를 가지는 융합된 수직 방향성 결합 스위치 설계)

  • Cho, Sung-Chan;Seol, Jong-Chol;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.42-50
    • /
    • 2000
  • We show that both cross and bar states with high extinction ratios larger than 30dB can be achieved at eh same ends of ultra-short fused vertical directional coupler switches with two sections by changing the refractive indices of cores and inner cladding layers less than 1%. Based on the calculation of extinction ratios of cross state and bar state for various refractive index and thickness of inner cladding layer and core using the improved coupled mode theory and beam propagation method, the guidelines for design to achieve large tolerances in refractive indices of core and inner cladding layer in fused vertical directional coupler switches are presented.

  • PDF

Analysis of Z-Source Inverters in Wireless Power Transfer Systems and Solutions for Accidental Shoot-Through State

  • Wang, Tianfeng;Liu, Xin;Jin, Nan;Ma, Dianguang;Yang, Xijun;Tang, Houjun;Ali, Muhammad;Hashmi, Khurram
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.931-943
    • /
    • 2018
  • Wireless power transfer (WPT) technology has been the focus of a lot of research due to its safety and convenience. The Z-source inverter (ZSI) was introduced into WPT systems to realize improved system performance. The ZSI regulates the dc-rail voltage in WPT systems without front-end converters and makes the inverter bridge immune to shoot-through states. However, when the WPT system is combined with a ZSI, the system parameters must be configured to prevent the ZSI from entering an "accidental shoot-through" (AST) state. This state can increase the THD and decrease system power and efficiency. This paper presents a mathematical analysis for the characteristics of a WPT system and a ZSI while addressing the causes of the AST state. To deal with this issue, the impact of the system parameters on the output are analyzed under two control algorithms and the primary compensation capacitance range is derived in detail. To validate the analysis, both simulations and experiments are carried out and the obtained results are presented.

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives

  • Ha, Jeong-Hyon;Kim, Min-Sun;Park, Yong-Il;Ryu, Shin-Hyung;Park, Mi-Gnon;Shin, Koo;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.281-285
    • /
    • 2002
  • The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.

INFLUENCE of SHS-CATALYSTS PHASE STRUCTURE on FORMING PRODUCTS of PARTIAL METHANE OXIDATION

  • Mironenko, A.V.;Rahmetkaliev, K.N.;Mansurov, Z.A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.278-283
    • /
    • 2000
  • The activity of catalysts obtained by self-propagating high temperature synthesis in reaction of partial methane oxidation at atmospheric pressure was investigated. Basing on the compared results of X-ray analysis and gas chromatography analysis of reaction products, the dependence of compounds formation on the phase concentrations in the studied catalyst samples was found.

  • PDF

The Study on the Characteristic of Phase Transition in Differential Thickness of Se1Sb2Se2 Thin Films

  • Lee Jae-Min;Yang Sung-Jun;Shin Kyung;Chung Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.241-243
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can be controlled by electrical or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. In this letter, the characteristics of phase transition in differential chalcogenide thin film are investigated. Al was used for the electrode as the thickness of 100, 300, 500 nm, respectively.

Electrical characteristic of differential ternary chalcogenide thin films (칼코게나이드 3원계 박막에서의 전기적 특성에 관한 연구)

  • Yang, Sung-Jun;Shin, Kyung;Lee, Jae-Min;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.377-380
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. GeSbTe(GST), AsSbTe(AST), SeSbTe(SST) used to phase change materials by appling electrical pulses. Thickness of ternary chalcogenide thin films have about 100nm. Upper and lower electrode were made of Al. It is compared with I-V characteristics after impress the variable pulses.

  • PDF

The Oxide Characteristics in Flash EEPROM Applications (플래시 EEPROM 응용을 위한 산화막 특성)

  • 강창수;김동진;강기성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.855-858
    • /
    • 2001
  • The stress induced leakage currents of thin silicon oxides is investigated in the VLSI implementation of a self learning neural network integrated circuits using a linearity synapse transistor. The channel current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 41 ${\AA}$, 86${\AA}$, which have the channel width ${\times}$ length 10 ${\times}$1${\mu}$m, 10 ${\times}$0.3${\mu}$m respectively. The stress induced leakage currents will affect data retention in synapse transistors and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor made by thin silicon oxides has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhitory state.

  • PDF