• Title/Summary/Keyword: Electronic field Strength

Search Result 186, Processing Time 0.027 seconds

Pigment Influence in High Density Polyethylene Electrical Strength (고밀도 폴리에틸렌에 있어서 전계의 세기의 영향)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.331-332
    • /
    • 2007
  • In this work, the TiO2 pigment influence in HDPE dielectric strength was analyzed. Chemical and structural characterizations were made to identify changes during the processing and your influence in the electrical properties, formulations containing 0, 0.5, 1, 2.5, 4 and 6 of titanium dioxide were processed by extrusion and injection molding with stabilization-antioxidants, ultraviolet stabilizers and plasticizers. The electrical strength tests were analyzed by the statistical distribution of Weibull, and the maximum likelihood method. The high concentrations present lower values to electrical strength. The parameter could be using to insulator panicles dispersion. The TiO2 concentration variation shows that these incorporations implicate strength values increase has a maximum (5,35MV/cm). High pigment concentration induces a little falls in property values. Observing the parameter, minimum experiment electric field (Ebmin) and electric strength value, found that the best electric perform formulation was the formulation with 2.5% TiO2 weight.

  • PDF

Adhesion and Electrical Performance by Roughness on Semiconductive-Insulation Interface Layer of Silicone Rubber (거칠기에 따른 반도전-절연 계면층에서 접착특성과 절연성능)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.78-81
    • /
    • 2004
  • In this paper, the effect of adhesion properties of semiconductive-insulating interface layer of silicone rubber on electrical properties was investigated. Surface structure and adhesion of semiconductive silicon rubber by surface asperity was obtained from SEM and T-peel test. In addition, ac breakdown test was carried out for elucidating the change of electrical property by roughness treatment. From the results, Adhesive strength of semiconductive-insulation interface was increased with surface asperity. Dielectric breakdown strength by surface asperity decreased than initial Specimen, but increased from Sand Paper #1200. According to the adhesional strength data unevenness and void formed on the silicone rubber interface expand the surface area and result in improvement of adhesion. Before treatment Sand Paper #1200, dielectric breakdown strength was decreased by unevenness and void which are causing to have electric field mitigation small. After the treatment, the effect of adhesion increased dielectric breakdown strength. It is found that ac dielectric breakdown strength was increased with improving the adhesion between the semiconductive and insulating interface.

  • PDF

Analysis of Insulating Reliability in Epoxy Composites Using Weibull Distribution Equation (와이블 분포식을 이용한 Epoxy 복합체의 절연 신뢰도 해석)

  • 임중관;박용필;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.647-651
    • /
    • 2001
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were applied to Weibull distribution probability. First of all, speaking of dielectric breakdown properties, the more hardener increased, the stronger breakdown strength became at low temperature because of cross-linked density by the virtue of ester radical. The breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised and the electric filed is concentrated. In the case of filled specimens with treating silane, the breakdown strength become much higher. Finally, from the analysis of weibull distribution, it was confirmed that to low allowed breakdown probability under 0,.1%, the applied field value needed to be under 21.5MV/cm.

  • PDF

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

Maximum Electric Field Strength Prediction of WCDMA Base Station Using Pilot Channel (Pilot 채널을 이용한 WCDMA 기지국의 최대 전기장 강도 예측)

  • Lee, Yeong-Su;Yoon, Hyun-Goo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1016-1019
    • /
    • 2011
  • In this paper, we predict a maximum electric field strength of WCDMA base station using a pilot channel in a code domain. In order to verify the feasibility of our method, we compare our predicted value on a self-designed test base station with a general electric field strength measurement value at a full-traffic load condition and with a calculated value by a ray-tracing technique. Predicted results show above 90 % agreement with the general measurement and calculation values. We also show that our prediction method can be applied to electric field measurement on a real operating base station. Therefore, it is concluded that our prediction method be an effective method to measure a maximum electric field strength in a base station inspection test.

Fundamental Issues in Graphene: Material Properties and Applications

  • Choi, Sung-Yool
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.67-67
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, exhibits fascinating electrical properties, such as a linear energy dispersion relation and high mobility in addition to a wide-range optical absorption and high thermal conductivity. Graphene's outstanding tensile strength allows graphene-based electronic and photonic devices to be flexible, bendable, or even stretchable. Recently many groups have reported high performance electronic and optoelectronic devices based on graphene materials, i.e. field-effect transistors, gas sensors, nonvolatile memory devices, and plasmonic waveguides, in which versatile properties of graphene materials have been incorporated into a flexible electronic or optoelectronic platform. However, there are several fundamental or technological hurdles to be overcome in real applications of graphene in electronics and optoelectronics. In this tutorial we will present a short introduction to the basic material properties and recent progresses in applications of graphene to electronics and optoelectronics and discuss future outlook of graphene-based devices.

  • PDF

A Study on the Properties of Epoxy used for Sensor due to Variation of Fabrication Conditions (센서용 에폭시 수지의 제조조건 변화에 따른 특성)

  • Shin, C.G.;Sung, N.J.;Kim, S.J.;Wang, J.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.509-510
    • /
    • 2007
  • The Breakdown properties of epoxy composites are used for transformers and sensor, which has been studied. As a result, From the measurements of breakdown voltage, the more hardener is increased the stronger breakdown strength at low temperature because the ester of hardener is increased. Breakdown strength at the high temperature is decreased because the temperature at $110^{\circ}C$ is near at $T_g$. When the filler is added, between epoxy and silica is formed interface. Therefore the charge is accumulated in it, and the electric field is concentrated, and breakdown strength is decreased than non-filled specimens. In the case of specimens, the treated with silane, the breakdown strength becomes much higher since this is suggested that silane coupling agent has been improved chemical bonding in the interfaces and has been relaxed the electric filed concentration.

  • PDF

The Thickness Dependence of Edge Effect in Thin Insulating Films

  • Song Jeong-Myen;Moon Byung-Moo;Sung Yung-Kwon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.13-17
    • /
    • 2003
  • This paper deals with the edge effect in thin insulating films, focusing on their dependence on film thickness. The finding is that the electric field is lowered at the edge as the film thickness is reduced, which, in turn, is closely related to dielectric breakdown voltage. In order to analyze this phenomenon, a simple capacitor model is introduced with which dependence of dielectric breakdown voltage around the electrode edge on the film thickness is explained. Due to analytical difficulty to get the expression of electrical field strength at the edge, an equivalent circuit approach is used to find the voltage expression first and then the electric field expression using it. The relation gets to an agreement with the experimental findings shown in the paper. This outcome may be extended to solve similar problems in multi-layer insulating films.

A Method to Obtain Effective Ground Conductivity Value in the Middle Frequency Band where the Informations of Soil Characteristics are Insufficient (토양의 정보가 부족한 지형에 적용 가능한 중파대역 유효 대지 도전율 계산법)

  • Bae, Su-Won;Kwon, Se-Woong;Lee, Woo-Sung;Moon, Hyun-Wook;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • In this work, a new method to obtain the effective ground conductivity value in the middle frequency band where the informations of soil characteristics are insufficient was proposed. The proposed method obtained the effective ground conductivity values with the measured field strength from sea reference stations and general attenuation model in the middle frequency band. In addition, the proposed method used statistical method to minimize the error between the measurements and the predictions. Then, the effective ground conductivity in Korea peninsular was obtained by using the proposed method. Finally, it was verified that the effective ground conductivity using the proposed method is useful to predict electric field strength in the middle frequency band.

Mechanical and electrical properties of insulating materials at cryogenic temperature (극저온에서의 절연재료의 기계적.전기적 성질)

  • 김상현;마대영;김현희;정순용;김영석
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1033-1039
    • /
    • 1996
  • Electrical and mechanical properties of polymer sheet at cryogenic temperature have been investigated. Tensile stress(and strain at break) in liquid nitrogen(77K) of 79.7MPa(l.2%) and 117.4MPa(2.05%) are evaluated for films of Polypropylene (PP) and Kapton, respectively. Dielectric loss tangent(tan .delta.) of PP and Kapton films is almost independent of the frequency and tensile stress. Also, field strength of PP film at 77K decreases with increasing the tensile stress.

  • PDF