• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.033 seconds

Reliability Evaluation for Hinge of Folder Devices Using ESPI

  • Kyungyoung Jhang;Minkwan Hyun;Lee, Taehun;Seokwon Chang
    • International Journal of Reliability and Applications
    • /
    • v.5 no.1
    • /
    • pp.15-24
    • /
    • 2004
  • Folder type electronic devices have hinge to support the rotational motion of folder. This hinge is stressed by the rotational inertia moment of folder at the maximum open limit position of folder. This stress is repeated whenever the folder is open, and it is a cause of hinge fracture. In this paper, the reliability evaluation for the hinge fracture in the folder type cellular phone is discussed. For this, the durability testing machine using crank-rocker mechanism is developed to evaluate the life cycle of the hinge, and the degradation after repetitions of opening and shutting is evaluated from the deformation around the hinge, where the deformation is measured by ESPI (electronic speckle pattern interferometer). Experimental results showed that ESPI was able to measure the deformation of hinge precisely, so we could monitor the change of deformation around the hinge as the repetition number of folder open is increased.

  • PDF

Graphene based Transparent Conductive Film : Status and Perspective (그래핀 기반 투명전극 : 현황과 전망)

  • Lee, Seoung-Ki;Ahn, Jong-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.309-318
    • /
    • 2013
  • Graphene has attracted considerable attention since its first production from graphite in 2004, due to its outstanding physical and chemical properties. The development of production methodsfor large scale, high quality graphene films is an essentialstep toward realizing graphene applications such as transparent, conductive film. Chemical deposition methods, using metal catalystsand gaseous carbon sources, have been extensively developed for large area synthesis. In this paper, wereview recent progress ingraphene production, and survey the role of graphene electrodes in various electronic devices such as touch panels, solar cells, solid statelighting and microelectronic devices.

Piezoelectric Thin Films for Microtransducer (마이크로 트랜스듀서를 위한 압전 박막 소재 기술 동향)

  • Jung, Soo Young;Baek, Seung-Hyub
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • Piezoelectric materials can directly convert mechanical energy to electrical one, and vice versa. Research on piezoelectric materials and devices has a long history, and now many relevant products are available in a wide range of applications such as medical, military, industrial, home appliance, and mobile electronics. One of the major research trends now is not only to further improve the physical properties of the piezoelectric materials, but also to reduce the size of the piezoelectric devices. This review focuses on the development of piezoelectric thin films that can enhance the performance of microtransducers.

Single Polysilicon EEPROM Cell and High-voltage Devices using a 0.25 μ Standard CMOS (0.25 μm 표준 CMOS 로직 공정을 이용한 Single Polysilicon EEPROM 셀 및 고전압소자)

  • Shin, Yoon-Soo;Na, Kee-Yeol;Kim, Young-Sik;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.994-999
    • /
    • 2006
  • For low-cost embedded EEPROM, in this paper, single polysilicon EEPROM and n-channel high-voltage LDMOST device are developed in a $0.25{\mu}m$ standard CMOS logic process. Using these devices developed, the EEPROM chip is fabricated. The fabricated EEPROM chip is composed of 1 Kbit single polysilicon EEPROM away and high voltage driver circuits. The program and erase characteristics of the fabricated EEPROM chip are evaluated using 'STA-EL421C'. The fabricated n-channel high-voltage LDMOST device operation voltage is over 10 V and threshold voltage window between program and erase states of the memory cell is about 2.0 V.

A Study on Tribological Properties of Diamond-like Carbon Thin Film for the Application to Solid Lubricant of MEMS Devices (MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석)

  • Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1010-1013
    • /
    • 2006
  • Hydrogenated Diamond-like carbon (DLC) films were Prepared by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas for the application to solid lubricant of MEMS devices. We have checked the influence of varying RF power on tribological properties of DLC film. We have checked their performance as two kinds of method such as FFM (Friction Force Microscope) and BOD (Ball-on Disk) measurement. The friction coefficients and the contact number of cycles to steady state decreased as the increase of RF power with FFM and BOD measurement, respectively.

Emission of Spin-polarized Light in Nitride-based Spin LEDs with Room-temperature Ferromagnetic (Ga,Mn)N Layer (상온 강자성 (Ga,Mn)N 박막을 이용한 질화물계 스핀 발광소자의 스핀편극된 빛의 발광)

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1056-1060
    • /
    • 2005
  • We investigated the fabrication and characteristics of the nitride-based spin-polarized LEDs with room-temperature ferromagnetic (Ga,Mn)N layer as a spin injection source. The (Ga,Mn)N thin films having room-temperature ferromagnetic ordering were found to exhibit the negative MR and anomalous Hall resistance up to room temperature, revealing the existence of spin-polarized electrons in (Ga,Mn)N films at room temperature. The electrical characteristics in the spin LEDs did not degraded in spite of the insertion of the (Ga,Mn)N layer into the LED structure. In EL spectra of the spin LEDs, it is confirmed that the devices produce intense EL emission at 7 K as well as room temperature. These results are expected to open up new opportunities to realize room-temperature operating semiconductor spintronic devices.

Monolithic film Bulk Acoustic Wave Resonator using SOI Wafer (SOI 웨이퍼를 이용한 압전박막공진기 제작)

  • 김인태;김남수;박윤권;이시형;이전국;주병권;이윤희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1039-1044
    • /
    • 2002
  • Film Bulk Acoustic Resonator (FBAR) using thin piezoelectric films can be made as monolithic integrated devices with compatibility to semiconductor process, leading to small size, low cost and high Q RF circuit elements with wide applications in communications area. This paper presents an MMIC compatible suspended FBAR using SOI micromachining. It is possible to make a single crystal silicon membrane using a SOI wafer In fabricating active devices, SOI wafer offers advantage which removes the substrate loss. FBAR was made on the 12㎛ silicon membrane. Electrode and Piezoelectric materials were deposited by RF magnetron sputter. The maximum resonance frequency of FBAR was shown at 2.5GHz range. The reflection loss, K$^2$$\_$eff/, Q$\_$serise/ and Q$\_$parallel/ in that frequency were 1.5dB, 2.29%, 220 and 160, respectively.

The Methodology of Systematic Global Calibration for Process Simulator

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.180-184
    • /
    • 2004
  • This paper proposes a novel methodology of systematic global calibration and validates its accuracy and efficiency with application to memory and logic devices. With 175 SIMS profiles which cover the range of conditions of implant and diffusion processes in the fabrication lines, the dominant diffusion phenomenon in each process temperature region has been determined. Using the dual-pearson implant model and fully-coupled diffusion model, the calibration was performed systematically. We applied the globally calibrated process simulator parameters to memory and logic devices to predict the optimum process conditions for target device characteristics.

A study on the NO$_2$ gas detector development using the CuTBP (Copper-tetra-te rt-butylphthalocyanine) chemiresistor device (CuTBP(Copper-tetra-tert-butylphthalocyanine) 화학 저항 장치를 이용한 NO$_2$ 가스 탐지기의 개발에 관한 연구)

  • 구자룡;이창희;김태완;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.417-420
    • /
    • 1996
  • We have investigated air/200ppm NO$_2$ gas-detector characteristics of using CuTBP (Copper-tetra-tert-butylphthalocyanine) chemiresistor devices. The CuTBP films were made by Langmuir-Blodgett (LB) techniques. Sensitivity, response time, recovery time, and repoducibility of the devices were measured by current-voltage characteristics. To increase sensitivity, interdigital electrode was used. It was found that a conductance G increases monotonically as the number of interdigital electrode increases, and a Sensitivity, Reproducibility is stable. As far as a current is concerned, the current when N=25 is greater than that when N=1 by 70 or so. It indicates that the number of interdigital electrodes affects the current, sensitivity and stability We have also investigated applicability of the CuTBP chemiresistor device for a gas detector.

  • PDF

The design of high-voltage rectangular waveform generator (저주파 변압기를 이용한 구형파 증폭시스템)

  • Lee, B.H.;Choi, W.G.;Lim, J.K.;Lee, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2152-2154
    • /
    • 1999
  • In this paper, we suggested the design rule of high-voltage rectangular waveform generator working in low frequency domain (5Hz $\sim$ 60Hz). Most of the commonly used power electronic switching devices have voltage ratings up to several kV. So it is difficult to design and fabricate high-voltage switching systems with the power electronic devices alone. We have combined IGBTC(1200V, 50A) with the specially designed transformer to get the high-voltage rectangular waveforms up to 40kV. In this work. next two things are the main factors. The first one is design of transformer working low-frequency domain close to 5Hz. And the second one is additional voltage source to floating the transformer voltage output. As a result, we can get frequency-variable and high-voltage rectangular voltage waveform and this can be a more efficient power source of sandpaper manufacturing process.

  • PDF