• Title/Summary/Keyword: Electronic conduction

Search Result 574, Processing Time 0.024 seconds

Influence of the cathode catalyst layer thickness on the behaviour of an air breathing PEM fuel cell

  • Ferreira-Aparicio, Paloma;Chaparro, Antonio M.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 2014
  • Fuel cells of proton exchange membrane type (PEMFC) working with hydrogen in the anode and ambient air in the cathode ('air breathing') have been prepared and characterized. The cells have been studied with variable thickness of the cathode catalyst layer ($L_{CL}$), maintaining constant the platinum and ionomer loads. Polarization curves and electrochemical active area measurements have been carried out. The polarization curves are analyzed in terms of a model for a flooded passive air breathing cathode. The analysis shows that $L_{CL}$ affects to electrochemical kinetics and mass transport processes inside the electrode, as reflected by two parameters of the polarization curves: the Tafel slope and the internal resistance. The observed decrease in Tafel slope with decreasing $L_{CL}$ shows improvements in the oxygen reduction kinetics which we attribute to changes in the catalyst layer structure. A decrease in the internal resistance with $L_{CL}$ is attributed to lower protonic resistance of thinner catalyst layers, although the observed decrease is lower than expected probably because the electronic conduction starts to be hindered by more hydrophilic character and thicker ionomer film.

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.344-355
    • /
    • 2017
  • In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

A NUMERICAL SIMULATION FOR THE PERFORMANCE CHARACTERIZATION OF HEAT SINKS (Heat Sink의 특성확인을 위한 수치적 Simulation)

  • Kim, Chang Nyung;Moon, Sung-il
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.147-156
    • /
    • 1999
  • A numerical simulation has been carried out for the performance characterization of heat sinks in electronic equipment. Heat transfer characteristics have been analyzed for various design parameters including the shape of heat sink, thickness of fin base and fin pitches. A commercial program called Flotherm has been employed for the numerical calculation. Optimal design of the heat sink has been persued which is closely related with the reduction of heat resistance involved in conduction and convection of heat.

  • PDF

Development of Conductive elastomer Roller for Image Forming High-Quality (고품질 화상형성을 위한 도전성 탄성체 롤러의 개발)

  • Jun, Ho-Ik;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3923-3927
    • /
    • 2010
  • Primary charging roller rotated with contacting surface of OPC drum and take charge OPC drum. Owing to this reason, primary charging roller is made by elasticity substance with electric conduction. Properties of charging and image is changed by class of coating, method of coating and environment. This study developed coating material and coating method to make Image Forming of High- quality.

Experimental investigations of Breakdown Phenomena in Soils in the vicinity of Ground rod (봉형접지전극 주변에서 토중방전현상에 대한 실험적 고찰)

  • Lee, Bok-Hee;Kim, Byoung-Gun;Lee, Woo-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • Morden electronic equipments are becoming very important in information oriented society, but they are vulnerable to lightning surges. Soil resistivity in the vicinity of grounding electrodes my be affected by the current flowing from the grounding electrodes into the surrounding soil. Electrical conduction in soils depends on the grain size, compactness, and variability of the grain sizes. When a high current is injected into the soil, and the breakdown phenomenon occur. In the present work, Electrical behaviors related to discharge in soils were investigated. The breakdown voltages in soil were lower than that sparkover voltage in air. The breakdown voltage in the gravel layer is relatively low, and the breakdown was caused by the flashover through the surface of gravels

  • PDF

Design and Implementation of a Current Controller for Boost Converters Using a DSP (DSP를 이용한 부스트 컨버터의 전류 제어기 설계 및 구현)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2012
  • This paper introduces a method for design and implementation of a current controller for boost converter operating in continuous conduction mode (CCM) using a digital signal processor (DSP). A Proportional-Integral (PI) type current controller outputs an average voltage command for inductor, used in the input side of the boost converter, and the duty-ratio of PWM (pulse width modulation) signal for switching device is directly calculated from the average voltage command. The gains of the PI current controller are selected such that the current response characteristics are the same as those of a first-order low-pass filter. The proposed current control scheme is implemented using a DSP based on fixed-point math operations and an experimental study has been performed to validate the proposed method.

Oscillator Strength of Normal-incidence Intersubband Absorption in Conduction Bands of Si and Ge Quantum Wells Using Polarization

  • Lee, Chanho
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.80-85
    • /
    • 1998
  • A theoretical calculation and an optical measurement method of normal-incidence absorption are proposed. By using a waveguide structure, optical interference and the problem of low level signal can be avoided in the measurement of normal-incidence absorption. The oscillator strength of intersubband absorption for a waveguide structure is calculated in Si(001), Si(110), and Ge(001) quantum wells. The polarization angle dependence of the measured and the calculated absorption strength can be obtained with the same waveguide structure, and be compared after normalization. The normal-incidence absorption in Si(110) and Ge(001) quantum wells is shown theoretically, and can be observed in the optical measurement using waveguide structures at the polarization angle of 90$^{\circ}$.

  • PDF

Characterizations of Interface-state Density between Top Silicon and Buried Oxide on Nano-SOI Substrate by using Pseudo-MOSFETs

  • Cho, Won-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • The interface-states between the top silicon layer and buried oxide layer of nano-SOI substrate were developed. Also, the effects of thermal treatment processes on the interface-state distributions were investigated for the first time by using pseudo-MOSFETs. We found that the interface-state distributions were strongly influenced by the thermal treatment processes. The interface-states were generated by the rapid thermal annealing (RTA) process. Increasing the RTA temperature over $800^{\circ}C$, the interface-state density considerably increased. Especially, a peak of interface-states distribution that contributes a hump phenomenon of subthreshold curve in the inversion mode operation of pseudo-MOSFETs was observed at the conduction band side of the energy gap, hut it was not observed in the accumulation mode operation. On the other hand, the increased interface-state density by the RTA process was effectively reduced by the relatively low temperature annealing process in a conventional thermal annealing (CTA) process.

Full-Range Analytic Drain Current Model for Depletion-Mode Long-Channel Surrounding-Gate Nanowire Field-Effect Transistor

  • Yu, Yun Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.361-366
    • /
    • 2013
  • A full-range analytic drain current model for depletion-mode long-channel surrounding-gate nanowire field-effect transistor (SGNWFET) is proposed. The model is derived from the solution of the 1-D cylindrical Poisson equation which includes dopant and mobile charges, by using the Pao-Sah gradual channel approximation and the full-depletion approximation. The proposed model captures the phenomenon of the bulk conduction mechanism in all regions of device operation (subthreshold, linear, and saturation regions). It has been shown that the continuous model is in complete agreement with the numerical simulations.

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.