DOI QR코드

DOI QR Code

Electrochemical Effectiveness Factors for Butler-Volmer Reaction Kinetics in Active Electrode Layers of Solid Oxide Fuel Cells

  • Nam, Jin Hyun (School of Mechanical Engineering, Daegu University)
  • Received : 2017.10.26
  • Accepted : 2017.12.06
  • Published : 2017.12.31

Abstract

In this study, a numerical approach is adopted to investigate the effectiveness factors for distributed electrochemical reactions in thin active reaction layers of solid oxide fuel cells (SOFCs), taking into account the Butler-Volmer reaction kinetics. The mathematical equations for the electrochemical reaction and charge conduction process were formulated by assuming that the active reaction layer has a small thickness, homogeneous microstructure, and high effective electronic conductivity. The effectiveness factor is defined as the ratio of the actual reaction rate (or equivalently, current generation rate) in the active reaction layer to the nominal reaction rate. From extensive numerical calculations, the effectiveness factors were obtained for various charge transfer coefficients of 0.3-0.8. These effectiveness data were then fitted to simple correlation equations, and the resulting correlation coefficients are presented along with estimated magnitude of error.

Keywords

References

  1. J. Larminie, A. Dicks, M. S. McDonald, Fuel Cell Systems Explained, 2nd Ed., John Wiley & Sons, Chichester, 2003.
  2. R. O'Hayre, S. W. Cha, W. Colella, F. B. Prinz, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons, New York, 2009.
  3. J. P. P. Huijsmans, F. P. F. Van Berkel, G. M. Christie, J. Power Sources, 1998, 71(1), 107-110. https://doi.org/10.1016/S0378-7753(97)02789-4
  4. D. J. Brett, A. Atkinson, N. P. Brandon, S. J. Skinner, Chem. Soc. Rev., 2008, 37(8), 1568-1578. https://doi.org/10.1039/b612060c
  5. E. D. Wachsman, K. T. Lee, Science, 2011, 334, 935-939. https://doi.org/10.1126/science.1204090
  6. E. Maguire, B. Gharbage, F. M. B. Marques, J. A. Labrincha, Solid State Ionics, 2000, 127(3), 329-335. https://doi.org/10.1016/S0167-2738(99)00286-6
  7. T. Ishihara, J. Yan, M. Shinagawa, H. Matsumoto, Electrochim. Acta, 2006, 52(4), 1645-1650. https://doi.org/10.1016/j.electacta.2006.03.103
  8. C. Fu, K. Sun, N. Zhang, X. Chen, D. Zhou, Electrochim. Acta, 2007, 52(13), 4589-4594. https://doi.org/10.1016/j.electacta.2007.01.001
  9. P. Holtappels, C. Bagger, J. Eur. Ceram. Soc., 2002, 22(1), 41-48. https://doi.org/10.1016/S0955-2219(01)00238-2
  10. F. Zhao, A. V. Virkar, J. Power Sources, 2005, 141(1), 79-95. https://doi.org/10.1016/j.jpowsour.2004.08.057
  11. V. A. C. Haanappel, J. Mertens, D. Rutenbeck, C. Tropartz, W. Herzhof, D. Sebold, F. Tietz, J. Power Sources, 2005, 141(2), 216-226. https://doi.org/10.1016/j.jpowsour.2004.09.016
  12. D. H. Jeon, J. H. Nam, C. J. Kim, J. Electrochem. Soc., 2006, 153(2), A406-A417. https://doi.org/10.1149/1.2139954
  13. M. Ni, M. K. Leung, D. Y. Leung, J. Power Sources, 2007, 168(2), 369-378. https://doi.org/10.1016/j.jpowsour.2007.03.005
  14. Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, Electrochem. Commun., 2009, 11(6), 1120-1123. https://doi.org/10.1016/j.elecom.2009.03.027
  15. Y. Chen, J. Bunch, T. Li, Z. Mao, F. Chen, J. Power Sources, 2012, 213, 93-99. https://doi.org/10.1016/j.jpowsour.2012.03.109
  16. H. Iwai, et al, J. Power Sources, 2010, 195(4), 955-961. https://doi.org/10.1016/j.jpowsour.2009.09.005
  17. J. R. Wilson, J. S. Cronin, S. A. Barnett, Scripta Mater., 2011, 65(2), 67-72. https://doi.org/10.1016/j.scriptamat.2010.09.025
  18. J. S. Cronin, Y. K. Chen-Wiegart, J. Wang, S. A. Barnett, J. Power Sources, 2013, 233, 174-179. https://doi.org/10.1016/j.jpowsour.2013.01.060
  19. P. Costamagna, P. Costa, E. Arato, Electrochim. Acta, 1998, 43(3), 375-394. https://doi.org/10.1016/S0013-4686(97)00063-7
  20. P. Costamagna, P. Costa, E. Arato, Electrochim. Acta, 1998, 43(8), 967-972. https://doi.org/10.1016/S0013-4686(97)00262-4
  21. D. Shin, J. H. Nam, Electrochim. Acta, 2015, 171, 1-6. https://doi.org/10.1016/j.electacta.2015.04.171
  22. D. Shin, S. M. Baek, J. H. Nam, C. J. Kim, Comp. Chem. Eng., 2016, 90, 268-277. https://doi.org/10.1016/j.compchemeng.2016.04.032
  23. S. M. Baek, D. Shin, S. Sohn, J. H. Nam, Fuel Cells, 2016, 16(5), 591-599. https://doi.org/10.1002/fuce.201500204
  24. J. H. Nam, Electrochim. Acta, 2016, 221, 8-13. https://doi.org/10.1016/j.electacta.2016.10.145
  25. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2001.
  26. A. Utz, H. Störmer, A. Leonide, A. Weber, E. IversTiffee, J. Electrochem. Soc., 2010, 157(6), B920-B930. https://doi.org/10.1149/1.3383041
  27. J. Mizusaki, et al, Solid State Ionics, 1994, 70-71, 52-58. https://doi.org/10.1016/0167-2738(94)90286-0
  28. B. de Boer, M. Gonzalez, H. J. M. Bouwmeester, H. Verweij, Solid State Ionics, 2000, 127(3), 269-276. https://doi.org/10.1016/S0167-2738(99)00299-4
  29. P. Holtappels, L. G. J. de Haart, U. Stimming, J. Electrochem. Soc., 1999, 146(5), 1620-1625. https://doi.org/10.1149/1.1391816
  30. S. A. Klein, F. L. Alvarado, Engineering Equation Solver, F-Chart Software, Madison, 2002.