• 제목/요약/키워드: Current generation performance

검색결과 610건 처리시간 0.035초

풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구 (A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer)

  • 안해준;노경수;김현구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

MATLAB & SIMULINK에서 풍력발전 계통연계 변압기결선과 고장전류와의 관계 (The Relationship between Wind Power Generation Grid-connected Transformer Winding Connection and Fault Current in MATLAB & SIMULINK)

  • 안해준;김현구;장길수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.307-309
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

태양광발전시스템용 직류 누설전류 센서 개발 (Development of DC Leakage Current Sensor for Solar Power Generation System)

  • 김희선;한송엽;한후석
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.828-833
    • /
    • 2014
  • Grid connected transformerless solar power generation system is frequently used with the benefits of cost and efficiency. However, significant DC leakage current can flow from the DC line into the ground with dielectric breakdown in the transformerless solar power generation system. The leakage current occurred in the DC line causes accidents such as fire and electric shock on human. To resolve this problem, high sensitivity DC leakage current sensor is needed. But recently the studies on safety of DC line are not performed. In this paper, a high sensitivity DC leakage current sensor that can detect DC leakage current in solar power generation system, is proposed. Based on the studies, DC leakage current sensor is fabricated and characteristic tests are carried out. Finally, the accuracy of sensor performance is verified by leakage current experiments in solar power generation system.

Wake Effect on HAT Tidal Current Power Device Performance

  • Jo, Chul-Hee;Lee, Kang-Hee;Lee, Jun-Ho;Nichita, Cristian
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.144-147
    • /
    • 2011
  • The rotor that initially converts the flow energy into rotational energy is a very important component that affects the efficiency of the entire tidal current power system. Rotor performance is determined by various design variables. Power generation is strongly dependent on the incoming flow velocity and the size of the rotor. To extract a large quantity of power, a tidal current farm is necessary with a multi-arrangement of devices in the ocean. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance, considering the interaction problems, needs to be investigated to maximize the power generation in a limited available area. The downstream rotor efficiency is affected by the wake produced from the upstream rotor. This paper introduces the performance of a downstream rotor affected by wakes from an upstream rotor, demonstrating the interference affecting various gabs between devices.

Widely Tunable Adaptive Resolution-controlled Read-sensing Reference Current Generation for Reliable PRAM Data Read at Scaled Technologies

  • Park, Mu-hui;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.363-369
    • /
    • 2017
  • Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).

MATLAB&SIMULINK에서 변압기 결선에 따른 풍력발전 시스템의 영향 평가 (Evaluation on Effect of Wind Power Generation System According to Transformer Winding Connection at Matlab&Simulink)

  • 안해준;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.772-773
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind power generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Performance inspection of smart superconducting fault current controller in radial distribution substation through PSCAD/EMTDC simulation

  • MassoudiFarid, Mehrdad;Shim, Jae Woong;Lee, Jiho;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.21-25
    • /
    • 2013
  • In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.

암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석 (Analysis of Falling-film Generator in Ammonia-water Absorption System)

  • 김병주;손병후;구기갑
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

전기화학적 수소 압축기의 열역학적 성능에 관한 연구 (Study on Thermodynamic Performance of Electrochemical Hydrogen Compressor)

  • 김태헌;김동윤;이동근;김영상;안국영;배용균;박진영;김영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.141-148
    • /
    • 2023
  • The thermodynamic performance of the electrochemical hydrogen compressor was analyzed to perform a comparative analysis with the performance of the mechanical compressor. The performance was analyzed through the applied current and the measured voltage value. The test results showed that the efficiency of the electrochemical hydrogen compressor was high in the low current density range. In addition, it was confirmed that the amount of increasing compress work of the electrochemical hydrogen compressor is smaller than that of the mechanical compressor. Therefore, it is expected to have higher efficiency than mechanical compression when compressed with a sufficiently high-pressure range.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.