• Title/Summary/Keyword: Electronic circuit

Search Result 3,010, Processing Time 0.029 seconds

Quench Characteristics of Superconducting Elements using Reactors at Series and Parallel Connections (직·병렬연결시 리액터를 이용한 초전도 소자의 퀜치 특성)

  • Choi, Hyo-Sang;Lim, Sung-Hun;Cho, Yong-Sun;Nam, Gueng-Hyun;Lee, Na-young;Park, Hyoung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.863-869
    • /
    • 2005
  • We investigated quench characteristics of superconducting elements connected in series and parallel each other. The serial and parallel connections of superconducting elements causes a difficulty in simultaneous quench due to slight difference between their critical current densities. In other to induce simultaneous quench, we fabricated four type circuits; serially connected circuit before parallel connection, the circuit connected in parallel before serial connection, serially connected circuit before parallel connection with reactors, the circuit connected in Parallel before serial connection with reactors. We confirmed that the simultaneous quenches occurred in serial and parallel connections of superconducting elements using reactors. In addition, the power burden of superconducting elements was smaller than those of serial and parallel connections of superconducting elements without reactors.

The Development of Resistive Leakage Current Circuit Breaker using a ARM Processor (ARM 프로세서를 이용한 저항성 누전 차단기 개발)

  • Lee, Hyun-Do
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.615-620
    • /
    • 2017
  • In this study, we have developed the resistive leakage current detecting and tripping circuit breaker based on a 32bit ARM processor. The developed leakage circuit breaker can be operated in a desired trip threshold within 0.03 seconds as specified in KS C 4613. This resistive leakage current breaker is expected to be applicable as a circuit breake for prevention of electric fires and electric shock in smart distribution panel.

Maximum Current Estimation Method for the Backup of Current Sensor Faults

  • Kim, Jae-Yeon;Park, Si-Hyun;Suh, Young-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.201-206
    • /
    • 2020
  • This paper presents a new method for controlling the current of lighting LEDs without current sensors. This method can be used as backup against LED current sensor faults. LED lighting requires a circuit with a constant current in order to maintain the same brightness when the ambient temperature changes. Therefore, we propose a new current estimation method to provide backup in case of current sensor faults based on the calculation of the inductor current. In the fabricated circuit, the average current changes from 144.03 mA to 155.97 mA when the ambient temperature changes from 0℃ to 60℃. The application of this study can enable the fabrication of a driving IC for LEDs in the form of a single chip without sensing resistors. This is expected to reduce the complexity of the peripheral circuit and enable precise feedback control.

Characteristic Prediction and Analysis of 3-D Embedded Passive Devices (3차원 매립형 수동소자의 특성 예측 및 분석에 대한 연구)

  • Shin, Dong-Wook;Oh, Chang-Hoon;Lee, Kyu-Bok;Kim, Jong-Kyu;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.607-610
    • /
    • 2003
  • The characteristic prediction and analysis of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. The four different structures of 3-D inductor are fabricated by using low-temperature cofired ceramic (LTCC) process. The circuit model parameters of the each building block are optimized and extracted using the partial element equivalent circuit method and HSPICE circuit simulator. Based on the model parameters, predictive modeling is applied for the structures composed of the combination of the modeled building blocks. And the characteristics of test structures, such as self-resonant frequency, inductance and Q-factor, are analyzed. This approach can provide the characteristic conception of 3-D solenoid embedded inductors for structural variations.

  • PDF

Equivalent-circuit Analysis of ITO/Alq3/Al Organic Light-emitting Diode

  • Chung, Dong-Hoe;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.131-134
    • /
    • 2007
  • An $ITO/Alq_3/Al$ structure was used to study complex impedance of $Alq_3$ based organic light-emitting diodes. Equivalent circuit was analyzed in a device structure of $ITO/Alq_3/Al$ with a thickness layer of $Alq_3$ of 100 nm. The obtained impedance was able to be fitted using equivalent circuit model of parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance of $R_s$.

An Influence of Material of Metal Grid for Interrupting Property (MCCB내부 금속 그리드 재질이 차단성능에 미치는 영향)

  • Kim, Kil-Sou;Yoon, Jae-Hun;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.101-101
    • /
    • 2010
  • Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. The arrangement and quality of the material of grids in arc quenching room are also designed optimally by the analysis of arc driving forces.

  • PDF

Design of Charge Pump Circuit with VCO (VCO를 이용한 차지펌프 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.118-122
    • /
    • 2011
  • For programming such as writing or erasing of the flash memory, two different kinds of high voltage are required, and the charge pump circuit has been used for this. The charge pump circuit proposed in this paper uses the VCO to adjust the clock frequency in order to match the reference voltage approved from the outside and the charge pump's output. Accordingly, I suggest a circuit that can produce a predictable output, regardless of not only an error by fabrication but also MOSFET's body effect generated in each part of the charge pump.

Driving circuit of magnetoimpedance sensor using Instrumentation amplifier (계측증폭기를 이용한 자기임피던스센서의 구동회로)

  • Song, Jae-Yeon;Kim, Young-Hak;Shin, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.581-584
    • /
    • 2003
  • The phase differences and noise signals are in general serious on output of a instrumentation amplifier for signal conditioning of a sensor driven at high frequency due to a time-varying input signal. In this study, we get the better amplification and S/N ratio using the rectified signal for the input of instrumentation amplifier. This driving circuits were designed and constructed by OrCAD and laboratory PCB process. All of the elements used on the circuit including highly speedy OP-Amp. was SMD type and the MI sensor was fabricated by meander-patterned amorphous ribbon. The output sensitivity of this circuit was $105.3mV/V{\cdot}Oe$. That's why this driving circuit is good at detection of fine magnetic field.

  • PDF

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

Silicon Based STDP Pulse Generator for Neuromorphic Systems (뉴로모픽 시스템을 위한 실리콘 기반의 STDP 펄스 발생 회로)

  • Lim, Jung Hoon;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.64-67
    • /
    • 2018
  • A new CMOS neuron circuit for implementing bistable synapses with spike-timing-dependent plasticity (STDP) properties has been proposed. In neuromorphic systems using STDP properties, the short-term dynamics of the synaptic efficacies are governed by the relative timing of the pre- and post-synaptic spikes, and the efficacies tend asymptotically to either a potentiated state or to a depressed one on long time scales. The proposed circuit consists of a negative shifter, a current starved inverter and a schmitt trigger designed using 0.18um CMOS technology. The simulation result shows that the proposed circuit can reduce the total size of neurons, and the spike energy of the proposed circuit is much less compared to the conventional circuits.