• Title/Summary/Keyword: Electronic Module

Search Result 1,257, Processing Time 0.027 seconds

A Study on the Characteristics and Fabrication of Switching Power Module for High Efficiency and Small Size of Power Supply System (전원장치의 소형화와 고효율화를 위한 스위칭 파워 모듈의 제작과 특성에 관한 연구)

  • Kim, Chan;Jeon, Eui-Seok;Kang, Do-Young;Kim, Byung-Cheul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.758-761
    • /
    • 2003
  • We have designed 5 V/500 mA transless type power module by using semiconductor switching technique, key technique for small size of power supply system. The power module is suitable to a small sized electronic system using a single power supply. It is composed of switching circuit using voltage drop type chopper method, control circuit, voltage detect circuit, and constant voltage circuit, and is fabricated to hybrid-IC type. The switching regulator power supply circuit, designed in this study, has satisfied the electrical characteristics of 5 V/500 mA transless type power module.

  • PDF

Thermoelectric Characteristics of a Thermoelectric Module Consisting of Chalcogenide Nanoparticles and Glass Fibers (칼코제나이드 나노입자와 유리섬유를 이용하여 제작된 열전모듈의 발전 특성)

  • Ryu, Hohyeon;Cho, Kyoungah;Choi, Jinyoung;Kim, Sangsig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • In this study, we fabricated a thermoelectric module made of nanoparticles (NPs) and glass fibers investigated its thermoelectric characteristics. P-type HgTe and n-type HgSe NPs synthesized by colloidal method were used as thermoelectric materials and glass fibers were used as spacers between the hot and cold electrodes of the thermoelectric module. In the module, the average Seebeck coefficients of the HgTe and HgSe NPs were 1260 and $-628{\mu}V/K$, respectively. The p-n module generated about a voltage of 11.9 mV and showed a power density of $1.6{\times}10^{-5}{\mu}W/cm^2$ at a temperature difference of 7.5 K.

Fabrication of Thick Film type Cluster for Anion Generator applications (음이온 발생용 후막형 클러스터의 제조)

  • Choa, Jung-Hwan;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Park, Zee-Hoon;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.464-464
    • /
    • 2007
  • 환경오염으로 인한 각종 질병 및 증후군 등의 발생으로 가정용 산업용에서 환경관련 기술들이 다양한 분야로 확대되고 있다. 본 연구에서는 양이온 및 음이온 양쪽이온을 최대한 발생시키며, 오존 발생량은 억제하고 소비전력을 절감하고자 Ag-Pd 전극을 적용한 세라믹스 클러스터를 개발하였다. Ag-Pd 전극과 매칭되는 세라믹스 조성을 개발한 후 적층공정 기술을 이용하여 후막형 클러스터를 제조하였다. 전극 패턴모양, 전극간 방전간격 및 전극 보호층의 두께에 따른 음이온 발생량을 측정하여 최적화를 위한 실험을 진행하였으며, 음이온 발생량 100만개이상, 오존발생량 0.6ppb인 특성을 확인하였다.

  • PDF

Analysis of Solar Simulator's Uncertainty Factor for Photovoltaic Module's I-V curve test (PV모듈의 I-V특성 시험을 위한 Solar Simulator의 측정불확도 요인 분석)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.5-7
    • /
    • 2006
  • In this paper, we analyzed the elements of measurement uncertainty on electrical performance test which are the most important things in photovoltaic module performance test. Repeating the performance test by 6 men, the measurement uncertainty could be calculated. In this experiment, Solar Simulator (A-Class pulse type) used for domestic certificate test of PV module is Pasan IIIb (Balval, Switzerland). The possible elements of the measurement uncertain that could effect electrical performance test of PV module are reference cell, spectrum correction, error from measurement repetition, test condition, stability and uniformity of artificial solar simulator. To find the measurement uncertainty, 6 men repeated the test by 10 times. And the results were that numerical average value was 124.44W and measurement uncertainty was $124.44W{\pm}0.75W$ with 95% confidence level for 125W PV module.

  • PDF

A Review on the Failure Mechanism for Crystalline Silicon PV Module (결정계 PV 모듈에 대한 고장 메커니즘 검토)

  • Kim, Jeong-Yeon;Kim, Ju-Hee;Chan, Sung-Il;Lim, Dong-Gun;Kim, Yang-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • It is summarized that potential causes of performance degradations and failure mechanisms of crystalline silicon photovoltaic (PV) modules installed in Middle East area. In addition, we also reviewed current PV module qualification test (IEC 61215) and the methods for detection of wear-out fault. The failure of PV modules in the extreme environmental conditions such as deserts is mainly due to high temperature, humidity, and dust storms. In particular, cementation phenomenon caused by combination of sand and moisture leads to rapid degradation in the performance of PV modules. In order to evaluate and guarantee the long term reliability of PV modules, specific qualification tests such as sand dust test, salt mist test and potential induce degradation test considering operating environment of PV module should be carried out.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

A Study on Improvement of the O-Ring Measurement System for the Constitutional Diagnosis (체질 진단을 위한 O-링 경근력 계측시스템의 개선에 관한 연구)

  • Kim, Y.Y.;Kim, J.M.;Yang, K.M.;Ko, S.B.;Jeong, D.M.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.90-94
    • /
    • 1995
  • In this paper, we improved the O-Ring Measurement System(O-R MS) based on oriental constitutional theory of four classes for objectify constitutional diagnosis by O-Ring test method which is one of effective methods in several constitutional diagnosis. The result of using in a half of year, some problems are pointed out. To settle these problems, we improved the actuator, display module, sensor module, and hardware of controller. Also, the software is supplemented to using the more decision parameters. It is estimated to have a high practical use for the objectified constitutional diagnosis.

  • PDF

Study of EMC Optimization of Automotive Electronic Components using ECAE

  • Kim, Tae-Ho;Kim, Mi-Ro;Jung, Sang-Yong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.248-251
    • /
    • 2014
  • As more vehicles become equipped with advanced electronic control systems, more consideration is needed with regards to automotive safety issues related to the effects of electromagnetic waves. Unwanted electromagnetic waves from the antenna, electricity and other electronic devices cause the performance and safety problem of automotive components. In general, Power Integrity and Signal Integrity analysis have been widely used, but these analyses have stayed PCB level. PCB base analysis is different from radiated emission TEST condition so its results are used just for reference. This paper proposes EMC optimization technology using module level 3-dimensional radiation simulation process closed to fundamental test conditions. If module level EMC analysis, which is proposed in this study, is applied to all automotive electronics systems, unexpected EMC noise will be prevented.

Implementation of Real Time Transmission and Processing System for ECG Signal (ECG 신호의 실시간 전송 및 처리시스템의 구현)

  • Cho, C.M.;Chang, W.Y.;Moon, C.H.;Chang, W.S.;Hong, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.734-737
    • /
    • 1988
  • This paper is aimed at describing the design and implementation of real time transmission and its processing system for ECG signal. For this purpose the analogue module dealing with 3-ch ECG signals, D/A converter module and built-in type MODEM are developed. The result of field tests was good for possible practical uses.

  • PDF

An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure (밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF