• Title/Summary/Keyword: Electron-transporting materials

Search Result 61, Processing Time 0.021 seconds

Improved Efficiency of Polymer LEDs using Electron Transporting Layer

  • Kim, Jong-Lae;Kim, Jai-Kyeong;Cho, Hyun-Nam;Kim, Dong-Young;Hong, Sung-Il;Kim, Chung-Yup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.125-126
    • /
    • 2000
  • We report the use of fluorene based copolymers containing quinoline(POF66, PIF66) and pyridine(PFPV) units as electron transporting polymers for multi-layered LEDs. Double-layer device structure combining PIF66 as electron-transporting layer with the emissive MEHPPV showed a maximum quantum efficiency of 0.03%, which is 30 fold increased compared with ITO/MEHPPV/Al single-layer device. PFPV layer increased the quantum efficiency up to 0.1% in the device structure of ITO/(P-3:PVK)/PFPV/Al. The ETL with the electron deficient moiety improved the LED performance by the characteristics of electron transporting as well as hole blocking between emissive layer and metal cathode.

  • PDF

Studies on the Characteristics of Single-Layered Organic EL Device Using a Copolymer Having Hole and Electron Transporting Moieties (정공 및 전자 전달체의 기능기를 가진 공중합체를 사용한 단층형 유기 발광소자의 특성에 관한 연구)

  • 이창호;김승욱;오세용
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.543-550
    • /
    • 2002
  • We have synthesized a novel carrier transporting copolymer having triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. Single-layered organic electroluminescent (EL) devices consisted of ITO/copolymer and emitting materials (DCM, coumarin 6, DPvBi)/Al exhibited maximum external quantum efficiency when the ratio of hole transporting unit and electron transporting unit is 6:4 and the content of emitting material is 30 wt%. Especially, the devices emitted the light of red (620 nm), green (520 nm) and blue (450 nm) corresponding to the emitting materials, respectively. A maximum luminance of ITO/copolymer (6:4) and DCM (30 wt%)/Al EL device was about 500 cd/$m^2$ at a DC drive voltage of 12V.

Properties of Electrical and Optical for OLED using Zn(HPB)q as Electron Transporting Layer (Zn(HPB)q를 전자수송층으로 이용한 OLED의 전기.광학적 특성 연구)

  • Kim, Dong-Eun;Park, Jun-Woo;Kim, Byoung-Sang;Lee, Burm-Jong;Kwon, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.927-931
    • /
    • 2010
  • Recently, high luminance and high efficiency were realized in OLED with multilayer structure including emitting materials such as metal-chelate complexes. We synthesized a new luminescent material, namely, [2-(2-hydroxyphenyl)quinoline] (Zn(HPB)q) which has low molecular compound and emitted in yellowish green region. The ionization potential(IP) and electron affinity(EA) of Zn(HPB)q were measured by cyclic-voltammetry(CV). As a result, IP and EA of Zn(HPB)q were calculated 6.8 eV and 3.5 eV, respectively. We fabricated the devices and observed the possibility of Zn(HPB)q as electron transporting layer. We have obtained an improvement of luminance and decrease of turn-on voltage using Zn(HPB)q as electron transporting layer.

Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials

  • Lee, Jeong-Ik;Lee, Jonghee;Lee, Joo-Won;Cho, Doo-Hee;Shin, Jin-Wook;Han, Jun-Han;Chu, Hye Yong
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.690-695
    • /
    • 2012
  • We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Development of Inverted Organic Photovoltaics with Anion doped ZnO as an Electron Transporting Layer

  • Jeong, Jae Hoon;Hong, Kihyon;Kwon, Se-Hun;Lim, Dong Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.490-497
    • /
    • 2016
  • In this study, 3-dimensional ripple structured anion (chlorine) doped ZnO thin film are developed, and used as electron transporting layer (ETL) in inverted organic photovoltaics (I-OPVs). Optical and electrical characteristics of ZnO:Cl ETL are investigated depending on the chlorine doping ratio and optimized for high efficient I-OPV. It is found that optimized chlorine doping on ZnO ETL enhances the ability of charge transport by modifying the band edge position and carrier mobility without decreasing the optical transmittance in the visible region, results in improvement of power conversion efficiency of I-OPV. The highest performance of 8.79 % is achieved for I-OPV with ZnO:Cl-x (x=0.5wt%), enhanced ~10% compared to that of ZnO:Cl-x (x=0wt%).

A Study on the efficiency improvement of OLED using Zn-Complex (Zn-complex를 이용한 OLED 효율향상에 관한 연구)

  • Jang, Yoon-Ki;Kim, Byoung-Sang;Lee, Burm-Jong;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We have synthesized electroluminescence materials. including [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB)$_2$), [(2-(2-hydroxyphenyl)benzoxazole)(8-hydoxyquinoline)] (Zn(HPB)q) and [(1, 10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q. The ionization potential (IP) and electron affinity (EA) of each Zn-complex was measured using cyclic-voltammetry (C-V). Basing on the consideration of matched in the energy levels of the materials. We investigated the electron transporting properties of Zn(HPB)q and Zn(phen)q compared with $Alq_3$, and also we investigated the hole blocking properties of Zn(HPB)$_2$, compared with BCP. As a result, we used Zn-complex to enhance the performance of OLED. Therefore, we demonstrate that Zn(HPB)q and Zn(phen)q are useful as an electron transporting material. Zn(HPB)$_2$ is also good a hole blocking material.

  • PDF

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

Novel transport materials for high-performance fluorescent and phosphorescent OLEDs

  • Bohm, E.;Anemian, R.;Busing, A.;Fortte, R.;Heil, H.;Kaiser, J.;Krober, J.;Leu, S.;Mujica-Fernaud, T.;Parham, A.;Pflumm, C.;Voges, F.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.141-144
    • /
    • 2011
  • To improve the performance of blue fluorescent and green phosphorescent organic light-emitting diode devices, Merck developed novel green phosphorescent host and electron-transporting materials. The newly developed electron-transporting material improves the external quantum efficiency of blue fluorescent devices up to 8.7%, with an excellent lifetime. In combination with the newly developed host materials, the efficiency of green phosphorescent devices can be improved by a factor of 1.7, and the lifetime by a factor of 7.

Studies on The Optical and Electrical Properties if Europium Complexes with Monolayer and Multilayer (Europium complexes 단층과 다층 구조 박막의 전기적ㆍ광학적 특성에 관한 연구)

  • 이명호;표상우;이한성;김영관;김정수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.871-877
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al, glass substrate/ITO/Eu(TTA)$_3$(phen)/Al and glass substrate/ITO/Eu(TTA)$_3$(phen)/AlQ$_3$/Al structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and Tris(8-hydroxyquinoline) aluminu-m(AlQ$_3$) as an electron transporting layer. Electrolumescent(EL) and I-V characteristics of Eu(TTA)$_3$-(-phen) were investigated. These structures show the red EL spectra, which are almost the same at the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a operation voltage of 9V. Electrical transporting phenomena of these structures were explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF