• Title/Summary/Keyword: Electron shielding

Search Result 104, Processing Time 0.029 seconds

Measurement of undesirable neutron spectrum in a 120 MeV linac

  • Yihong Yan ;Xinjian Tan;Xiufeng Weng ;Xiaodong Zhang ;Zhikai Zhang ;Weiqiang Sun ;Guang Hu ;Huasi Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3591-3598
    • /
    • 2023
  • Photoneutron background spectroscopy observations at linac are essential for directing accelerator shielding and subtracting background signals. Therefore, we constructed a Bonner Sphere Spectrometer (BSS) system based on an array of BF3 gas proportional counter tubes. Initially, the response of the BSS system was simulated using the MCNP5 code. Next, the response of the system was calibrated by using neutrons with energies of 2.86 MeV and 14.84 MeV. Then, the system was employed to measure the spectrum of the 241Am-Be neutron source, and the results were unfolded by using the Gravel and EM algorithms. Using the validated system, the undesirable neutron spectrum of the 120 MeV electron linac was finally measured and acquired. In addition, it is demonstrated that the equivalent undesirable neutron dose at a distance of 3.2 m from the linac is 19.7 mSv/h. The results measured by the above methods could provide guidance for linac-related research.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding

  • Gholamzadeh, Leila;Sharghi, Hamed;Aminian, Mohsen Khajeh
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.318-325
    • /
    • 2022
  • In this study, composites containing undoped and barium-doped Bi2WO6:Ba2+were investigated for their shielding against diagnostic X-ray. At first, Bi2WO6 and barium-doped Bi2WO6 were synthesized with different weight percentages of barium oxide through a hydrothermal process. The as-synthesized nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy (RS). After that, some shields were generated with undoped and barium-doped Bi2WO6:Ba2+ nanostructure particles incorporated into polyvinyl chloride (PVC) polymer with different thicknesses and 15% weight of the nanostructure. Finally, the prepared samples were exposed to an X-ray tube at 40, 80, and 120 kV voltages, 10 mAs and, 44.5 cm SID (i.e. the distance from the X-ray beam source to the specimen). Linear and mass attenuation coefficients were also calculated for different samples. The results indicated that, among the samples, the one with 7.5 mmol barium-doped Bi2WO6 had the most attenuation at the voltage of 40kV, and the attenuation coefficients would increase with an increase in the amount of barium. The samples with 15 and 17.5 mmol barium-doped Bi2WO6 had higher attenuation than the others at 80 and 120 kV. Moreover, the half-value layer (HVL), tenth-value layer (TVL) and 0.25 mm lead equivalent thickness were calculated for all the samples. The lowest HVL value was for the sample with 7.5 mmol barium-doped Bi2WO6. As the result clearly show, an increment in the barium-doping content leads to a decrease in both HVL and TVL. In every three voltages, 0.25 mm lead equivalent thickness of the barium-doped composites (7.5 mmol and 15 mmol) had less than the other composites. The lowest value of 0.25 mm lead equivalent thickness was 7.5 barium-doped in 40 kV voltage and 15 mmol barium-doped in 80 kV and 120 kV voltages. These results were obtained only for 15% weight of the nanostructure.

Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method (무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조)

  • Yoon, C.H.;Ahn, J.G.;Kim, D.J.;Sohn, J.S.;Park, J.S.;Ahn, Y.G.
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

A Study on Dobe Distribution outside Co-60 $\gamma$ Ray ana 10MV X Ray Fields ($^{60}Co\;\gamma$선과 10MV X선의 조사면 밖의 선량분포에 관한 연구)

  • Kang, Wee-Saing;Huh, Seung-Jae;Ha, Sung-Whan
    • Radiation Oncology Journal
    • /
    • v.2 no.2
    • /
    • pp.271-280
    • /
    • 1984
  • The peripheral dose, defined as the dose outside therapeutic photon fields, which is responsible for the functional damage of the critical organs, fetus, and radiation. induced carcinogenesis, has been investigated for $^{60}Co\;\gamma$ ray and 10 MV Xray. It was measured by silicon diode controlled by semiautomated water phantom without any shielding or with lead plate of HVL thickness put horizontally or vertically to shield stray radiations. Authors could obtain following results. 1. The peripheral dose was larger than $0.7\%$ of central axis maximum dose even at 20cm distance from field margin. That is clinically significant, so it should be reduced. 2. Even for square fields of 10 MV Xray, radial peripheral dose distribution did not coincide with transverse distribution, because of the position of collimator jaws. 3. Between surface and $d_m$, the peripheral dose distributions show a pattern of the dose distribution of electron beams and the maximum doss was approximately proportional to the length of a side of square field. 4. The peripheral doses depended on radiation quality, field size, distance from field margin and depth in water. Distance from field margin was the most important factor. 5. Except for near surface, the peripheral dose from phantom was approximately equal to that from therapy unit. 6. To reduce the surface dose outside fields, therapist should shield stray radiations from therapy unit by lead plate of at least one HVL for 10 MV X-ray and by bolus equivalent to tissue of 0.5cm thickness for $^{60}Co$. 7. To reduce the dose at depth deeper than $d_m$, it is desirable to shield stray radiations from therapy unit by lead.

  • PDF

Characterization of PMMA/MWNT Composites Fabricated by a Twin Screw Extruder (이축 압출기를 이용하여 제조된 PMMA/MWNT 복합체의 특성 분석)

  • Woo, Jong-Seok;Lee, Geon-Woong;Kye, Hyoung-San;Shin, Kyung-Chul;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • MWNTs have been widely investigated due to unique properties of such as good electrical conductivity and thermal stability in polymer composites industries. This paper established the procedure to fabricate PMMA/MWNT composites by a modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The electrical properties of PMMA/MWNT composites with different content of MWNT have been investigated. A sheet resistance percolation was observed at 4 wt% of MWNT for the melt processed composites. Sheet resistance of PMMA/MWNT composite film containing 4 wt% of MWNT was nearby $10^4{\Omega}/sq$ and this shows the possibility of potential application to EMI (Electronic Magnetic Interference) shielding materials. The characteristics of composites were analyzed by TGA, DSC, and SEM. In addition, MFI (Melt Flow Index) has been measured to analyze the rheological property.

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • Park Su-Yeol;Sin Seung-Rim;Sin Jong-Il;O Se-Hwa;Jeon Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2005.05a
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF

Effect of Reductants and their Properties of Electric Resistivity on the Preparation of Ag coated Cu Powders by Chemical Reduction Method (화학환원법을 이용한 은 코팅 구리 분말 제조 시 환원제의 영향 및 전기비저항 특성)

  • Ahn, Jong-Gwan;Yoon, Chi-Ho;Kim, Dong-Jin;Cho, Sung-Wook;Park, Je-Shin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1097-1102
    • /
    • 2010
  • Silver coated copper powders were prepared by a chemical reduction method with controlling the deposition process variables such as the feeding rate of the silver ionic solution and concentration of the reductants at room temperature. The characteristics of the products were evaluated by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic absorption spectrophotometer (AA) and a 4 probe resistivity measurement system. The optimum condition of the preparation of Ag coated Cu powders was at 0.05 M of potassium sodium tartrate and 2 ml/min of the feeding rate of the silver ionic solution. Our method successfully produced dense, uniform, and well-dispersed Ag coated Cu powder of $2{\sim}2.5{\mu}m$ witha silver layer of 100~200 nm. Additionally, we found that thespecific resistivity of the 30 wt.% Ag coated Cu powder was similar to that of pure silver, so that the composite powder could be used as an alternative electromagnetic shielding material for silver.

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF