DOI QR코드

DOI QR Code

Measurement of undesirable neutron spectrum in a 120 MeV linac

  • Yihong Yan (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Xinjian Tan (State Key Laboratory of Intense Plused Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Xiufeng Weng (State Key Laboratory of Intense Plused Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Xiaodong Zhang (State Key Laboratory of Intense Plused Radiation Simulation and Effect, Northwest Institute of Nuclear Technology) ;
  • Zhikai Zhang (School of Applied Physics, Xi'an Jiaotong University) ;
  • Weiqiang Sun (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Guang Hu (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Huasi Hu (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2023.02.25
  • Accepted : 2023.06.13
  • Published : 2023.10.25

Abstract

Photoneutron background spectroscopy observations at linac are essential for directing accelerator shielding and subtracting background signals. Therefore, we constructed a Bonner Sphere Spectrometer (BSS) system based on an array of BF3 gas proportional counter tubes. Initially, the response of the BSS system was simulated using the MCNP5 code. Next, the response of the system was calibrated by using neutrons with energies of 2.86 MeV and 14.84 MeV. Then, the system was employed to measure the spectrum of the 241Am-Be neutron source, and the results were unfolded by using the Gravel and EM algorithms. Using the validated system, the undesirable neutron spectrum of the 120 MeV electron linac was finally measured and acquired. In addition, it is demonstrated that the equivalent undesirable neutron dose at a distance of 3.2 m from the linac is 19.7 mSv/h. The results measured by the above methods could provide guidance for linac-related research.

Keywords

Acknowledgement

This work is supported by the NSAF Joint Fund set up by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics under Grant (U1830128); the Foundation of Key Laboratory of Nuclear Reactor System Design Technology, Chinese Academy of Nuclear Power; and the National Natural Science Foundation of China (No. 11975182).

References

  1. B. Sun, Y. Wang, D.W. Hei, et al., Development of online automatic conditioning system in electron linear accelerator[J], Atomic Energy Sci. Technol. 8 (2019) 1517-1522. 
  2. Y. Yu, X. Weng, Y. Yang, et al., The study of fast neutrons production via the electrodisintegration reactions of high energy electrons[J], Nucl. Instrum. Methods Phys. Res. 954 (2020) 161747-161751.  https://doi.org/10.1016/j.nima.2018.12.062
  3. Q. Wang, X. Weng, Y. Yu, et al., Investigation of fast neutron resonance transmission analysis based on the ultrashort pulsed electron beam-driven photoneutron source[J], J. Instrum. 14 (5) (2019). P05004-P05004.  https://doi.org/10.1088/1748-0221/14/05/P05004
  4. X. Chen, Z.C. Zhang, K. Zhang, et al., Study on the time response of a barium fluoride scintillation detector for fast pulse radiation detection[J], IEEE Trans. Nucl. Sci. (99) (2020), 1-1. 
  5. M.J. Gadlage, A.H. Roach, A.R. Duncan, et al., Soft errors induced by high-energy electrons[J], IEEE Trans. Device Mater. Reliab. 17 (1) (2017) 157-162.  https://doi.org/10.1109/TDMR.2016.2634626
  6. M.J. Gadlage, A.H. Roach, A.R. Duncan, et al., Multiple-cell upsets induced by single high- energy electrons[J], IEEE Trans. Nucl. Sci. 65 (1) (2018) 211-216.  https://doi.org/10.1109/TNS.2017.2756441
  7. T.G. Soto-Bernal, A. Baltazar-Raigosa, D. Medina-Castro, et al., Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range[J], Nucl. Instrum. Methods Phys. Res. (2017) 27-38. 
  8. T.G. Soto-Bernal, A. Baltazar-Raigosa, D. Medina-Castro, et al., Neutron production in the interaction of 12 and 18MeV electrons with a scattering foil inside a simple LINAC head, [J]. Appl Radiat Isot (2018) 4-52. 
  9. M. Stefanik, P. Bem, M. Majerle, et al., Neutron Spectrum Determination of d(20)+Be Source Reaction by the Dosimetry Foils method[J], Radiation Physics & Chemistry, 2017. S0969806X17303225. 
  10. M. tefanik a b, P. Bem a, A.M. G, et al., Neutron spectrum determination of the p(35 MeV)-Be source reaction by the dosimetry foils method[J], Nucl. Data Sheets 119 (1) (2014) 422-424.  https://doi.org/10.1016/j.nds.2014.08.119
  11. H.J. Kim, I.S. Hahn, M.J. Hwang, et al., Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches[J], Astropart. Phys. 20 (5) (2004) 549-557.  https://doi.org/10.1016/j.astropartphys.2003.09.001
  12. V. Chazal, R. Brissot, J.F. Cavaignac, et al., Neutron background measurements in the underground laboratory of Modane[J], Astropart. Phys. 9 (2) (1997) 163-172.  https://doi.org/10.1016/S0927-6505(98)00012-7
  13. H.R. Vega-Carrillo, A.E. Manzanares-Acuna, Background neutron spectrum at 2420 m above sea level[J], Nucl. Instrum. Methods Phys. Res. 524 (1-3) (2004) 146-151.  https://doi.org/10.1016/j.nima.2004.01.044
  14. A. Esposito, R. Bedogni, C. Domingo, et al., Measurements of leakage neutron spectra from a high-energy accumulation ring using Extended Range Bonner Sphere Spectrometers[J], Radiat. Meas. 45 (10) (2010) 1522-1525.  https://doi.org/10.1016/j.radmeas.2010.04.008
  15. R. P, Belli, et al., Deep Underground Neutron Flux Measurement with Large BF3 counters[J], IL Nuovo Cimento A, 1989. 
  16. P. Goldhagen, M. Reginatto, T. Kniss, et al., Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane[J], Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 476 (1-2) (2002) 42-51.  https://doi.org/10.1016/S0168-9002(01)01386-9
  17. B. Wiegel, S. Agosteo, R. Bedogni, et al., Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry[J], Radiat. Meas. 44 (7) (2009). 
  18. A. Baltazar-Raigosa, H.R. Vega-Carrillo, A. Garcia-Duran, et al., Novel passive nested bonner cubes spectrometer for neutrons and its response matrix[J], The European Physical Journal Plus 136 (10) (2021) 1-13.  https://doi.org/10.1140/epjp/s13360-020-01001-7
  19. S.J. Boot, J.A.B. Gibson, A Counter for Measuring Neutron Dose Equivalent from Thermal Energies to 10 keV[R]. Harwell, UKAEA/Atomic Energy Research Establishment, 1978. Report AERER-9357. 
  20. B. Burgkhardt, G. Fieg, A. Klett, et al., The neutron fluence and H*(10) response of the new LB 6411 REM counter[J], Radiat. Protect. Dosim. 70 (1) (1997) 361-364.  https://doi.org/10.1093/oxfordjournals.rpd.a031977
  21. C. Birattari, A. Ferrari, C. Nuccetelli, et al., An extended range neutron rem counter[J], Nucl. Instrum. Methods Phys. Res., Sect. A 297 (1-2) (1990) 250-257.  https://doi.org/10.1016/0168-9002(90)91373-J
  22. M. Mourgues, J.C. Carossi, G. Portal, A Light Rem-Counter of Advanced technology[C]. Neutron Dosimetry, Proc. Eurtom 5th Symp. Neuherberg, 1984. 
  23. D.T. Bartlett, R.J. Tanner, D.G. Jones, A new Design of neutron dose equivalent survey instrument[J], Radiat. Protect. Dosim. 74 (4) (1997) 267-271.  https://doi.org/10.1093/oxfordjournals.rpd.a032206
  24. V. Mares, G. Schraube, H. Schraube, Calculated neutron response of a Bonner sphere spectrometer with 3He counter[J], Nucl. Instrum. Methods Phys. Res. 307 (2-3) (1991) 398-412.  https://doi.org/10.1016/0168-9002(91)90210-H
  25. V. Mares, H. Schraube, Evaluation of the response matrix of a Bonner sphere spectrometer with LiI detector from thermal energy to 100 MeV[J], Nucl. Instrum. Methods Phys. Res. 337 (2-3) (1994) 461-473.  https://doi.org/10.1016/0168-9002(94)91116-9
  26. A. Aroua, M. Grecescu, P. Lerch, et al., Evaluation and test of the response matrix of a multisphere neutron spectrometer in a wide energy range Part I. Calibration[J], Nucl. Instrum. Methods Phys. Res. 321 (1-2) (1992) 298-304.  https://doi.org/10.1016/0168-9002(92)90404-R
  27. T.E. Booth, S. Avneet, T.J. Goorley, S. Jeffrey, B.F. Brown, R. Arthure, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5: LA-UR-03-1987, Los Alamos National Laboratory, Los Alamos, NM, USA, 2003. 
  28. Evaluated Nuclear Data File, ENDF/B-VIII.0 released, Available online: https://www.nndc.bnl.gov/exfor/endf00.jsp, February 2, 2018. (Accessed 25 February 2022). 
  29. J.M. Gomez-ros, R. Bedogni, D. Bortot, et al., CYSP: a new cylindrical directional neutron spectrometer, Conceptual design[J]. Radiation measurements (2015) 8247-8251, https://doi.org/10.1016/j.radmeas.2015.07.005. 
  30. W. Ruhm, V. Mares, C. Pioch, et al., Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1MeV and 1GeV - potential impact on neutron dosimetry at energies higher than 20 MeV[J], Radiat. Meas. 67 (2014) 24-34.  https://doi.org/10.1016/j.radmeas.2014.05.006
  31. M. Matzke, Unfolding of Pulse Height Spectra: the HEPRO Program system[R], PTB-Report PTB-N-19, PTB Braunschweig, 1994. 
  32. Matzke Manfred, Unfolding of Particle spectra[J], Physikalisch-Technische Bundesanstalt (Germany), 1997, p. 2867. 
  33. E.Y. Sidky, L.F. Yu, X.C. Pan, et al., A robust method of X-ray source spectrum estimation from transmission measurements: demonstrated on computer-simulated, scatter-free transmission data[J], J. Appl. Phys. 97 (12) (2005) 1-11.  https://doi.org/10.1007/10828028_1
  34. International Organization for Standardization, Reference Neutron Radiations-Part I: Characteristics and Methods of Production, 2000. ISO 8529-1. 
  35. S.J. Chen, et al., Measurement uncertainty and its estimation[J], The Administration And Technique Of Environmental Monitoring 14 (5) (2002) 38-43. 
  36. ICRP, ICRP publication 74: conversion coefficients for use in radiological protection against external radiation[J], Annals of the Icrp 26 (1997).