DOI QR코드

DOI QR Code

Design of type 316L stainless steel 700 ℃ high-temperature piping

  • Received : 2023.03.08
  • Accepted : 2023.06.13
  • Published : 2023.10.25

Abstract

High-temperature design evaluations were conducted on Type 316L stainless steel piping for a 700 ℃ large-capacity thermal energy storage verification test loop (TESET) under construction at KAERI. The hot leg piping with sodium coolant at 700 ℃ connects the main components of the loop heater, hot storage tank, and air-to-sodium heat exchanger. Currently, the design rules of ASME B31.1 and RCC-MRx provide design procedures for high-temperature piping in the creep range for Type 316L stainless steel. However, the design material properties around 700 ℃ are not available in those rules. Therefore, a number of material tests, including creep tests at various temperatures, were conducted to determine the insufficient material properties and relevant design coefficients so that high-temperature design on the 700 ℃ piping may be possible. It was shown that Type 316L stainless steel can be used in a 700 ℃ high-temperature piping system of Generation IV reactor systems or a renewable energy systems, such as thermal energy storage systems, for a limited operation time.

Keywords

Acknowledgement

This work was supported by the National Research Council of Science & Technology (NST) grant (CAP-20-03-KAERI) and NRF grants (2021M2D1A 1084836, 2021R1l1A2057941 and 2021K1A3A1A78097845) funded by the Korean government (MSIT).

References

  1. ASME, BPVC Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, ASME, New York, 2021.
  2. ASME B31.1, ASME Code for Power Piping, ASME, New York, 2018.
  3. H.-Y. Lee, S.-K. Son, M.-G. Won, J.-Y. Jeong, Risks of non-conservative design according to ASME B31.1 for high-temperature piping subjected to long-term operation in creep range, Nucl. Sci. Tech. 30 (5) (2019) 1-11. https://doi.org/10.1007/s41365-018-0540-8
  4. H.-Y. Lee, J. Eoh, Securing integrity of high-temperature pressure boundary design rules, Int. J. Pres. Ves. Pip. 195 (2022), 104598_1-10459813. https://doi.org/10.1016/j.ijpvp.2021.104598
  5. H.-Y. Lee, J. Lee, Issues and solutions for integrity of pressure vessels and piping subjected to long-term creep exposure in supercritical thermal plants, Mater. A. T. High. Temp. 39 (6) (2022) 436-445. https://doi.org/10.1080/09603409.2022.2041847
  6. H.-Y. Lee, J.-Y. Jeong, Quantification of conservatism in pressure vessel design subjected to long-term creep conditions as per ASME Section VIII Division 2, Int. J. Pres. Ves. Pip. 180 (2020) 1~15.
  7. RCC-MRx, Section 1 Subsection B, Class 1 N1RX Reactor Components, AFCEN, Lyon, France, 2018.
  8. ASME, BPVC.CC.NC.S4-2019 Code Case N-898, Use of Alloy 617 (UNS N06617) for Class A Elevated Temperature Service Construction III Division 5, New York, 2019.
  9. H.-Y. Lee, J. Eoh, J.-Y. Jeong, Elevated temperature design and integrity evaluation of a large-scale sodium test facility, STELLA-2, Nucl. Eng. Des. 346 (2019) 54-66. https://doi.org/10.1016/j.nucengdes.2019.02.024
  10. J. Eoh, J. Lee, H. Kim, J. Yoon, H.-Y. Lee, J.-Y. Jeong, Sodium Thermal-hydraulic Test for Design Validation of Prototype Gen-IV Sodium-Cooled Fast Reactor, ICAPP, Charlotte, NC, 2018. April 8-11.
  11. H.-Y. Lee, M.-G. Won, N.-S. Huh, HITEP_RCC-MRX program for the support of elevated temperature design evaluation and defect assessment, J. pres. Ves. Tech., Trans. ASME 141 (2019). October, 051205_1-05120513. https://doi.org/10.1115/1.4043916
  12. H.-Y. Lee, M.-G. Won, S.-K. Son, N.-S. Huh, Development of a program for high-temperature design evaluation according to RCC-MRx, Nucl. Eng. Des. 324 (2017) 181-195. https://doi.org/10.1016/j.nucengdes.2017.08.034
  13. H.-Y. Lee, J. Yoon, J. Lee, J. Eoh, High-temperature design of 700 ℃ heat exchanger in a large scale high-temperature thermal energy storage performance test facility, in: ASME PVP 2022 Conference, July 17-22, Las Vegas, Nevada, USA, 2022.
  14. ASME, BPVC Section III, Rules for Construction of Nuclear Power Plant Components, Division 1, Subsection NB, Class 1 Components, ASME, New York, 2019.
  15. ASME, BPVC.CC.NC.S4-2017 Code Case N-872, Use of 52Ni-22Cr-13Co-9Mo Alloy 617 (UNS N06617) for Low Temperature Service Construction III Division 5, New York, 2017.
  16. H.-Y. Lee, Y.-W. Kim, K.-N. Song, Preliminary application of the draft code case for alloy 617 for a high temperature component, J. Mech. Sci. Technol. 22 (5) (2008) 856-863. https://doi.org/10.1007/s12206-008-0118-1
  17. RCC-MRx, Section III Subsection Z, Appendix A3, AFCEN, Lyon, France, 2018.
  18. ASME, BPVC Section II, Part A, Ferrous Material Specifications, ASME, New York, 2021.
  19. ASME, BPVC Section II, Part D, Properties (Metric), ASME, New York, 2021.
  20. RCC-MRx, Section III Tome 2 Materials, AFCEN, 2018. Lyon, France.
  21. ASME, Boiler and Pressure Vessel Code, Section VIII, Division 2, Alternative Rules, American Society of Mechanical Engineers, New York, 2021.
  22. ASME, Boiler and Pressure Vessel Code, Code Case 2843-2, Analysis of Class 2 Components in the Time-dependent Regime e Section VIII Division 2, American Society of Mechanical Engineers, New York, 2019.
  23. D.-H. Ha, S.-J. Kim, H.-Y. Lee, J. Lee, Low cycle fatigue behavior and life evaluation of Type 316L stainless steel at 700 ℃, Trans. KSME A 46 (7) (2022) 655-662. https://doi.org/10.3795/KSME-A.2022.46.7.655
  24. D.-H. Ha, H.-Y. Lee, S.-J. Kim, J. Eoh, Proposition of high-temperature fatigue properties for the application of type 316L stainless steel in 700 ℃ high-temperature design, Trans. KSME A 46 (12) (2022) 1033-1039. https://doi.org/10.3795/KSME-A.2022.46.12.1033
  25. H.-Y. Lee, H. Kim, J. Eoh, High-temperature design of 700 ℃ heat exchanger in a large scale high-temperature thermal energy storage performance test facility,, in preparation, J. Press. Vessel Technol., Trans. ASME (2023).
  26. ASTM E139, Standard Test Methods for Conducting Creep, Creep-Rupture and Stress-Rupture Tests of Metallic Materials, ASTM, 2021.
  27. Guide for Introducing a New Material in the RCC-MRx, AFCEN/RX.17.006, AFCEN, Lyon, France, 2017.
  28. Data Acceptability Criteria and Data Generation: Generic Recommendations for Creep, Creep Rupture, Stress Rupture and Stress Relaxation Data, ECCC Recommendations - Volume 3 Part I [Issue 5], European Creep Collaborative Committee, 2001.
  29. H. Kim, J. Yoon, Y.-H. Shin, J. Lee, Study and Proposal on Requirements and Operational Logic of Thermal Energy Storage (ESS) Systems Using Liquid-Metal Cooling Systems, 2022. KAERI/TR-9184/2022.