• Title/Summary/Keyword: Electron beam treatment

Search Result 282, Processing Time 0.026 seconds

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

Research of 6 MeV Electron Dose Distribution (6 MeV Electron Therapy에서의 Electron Dose Distribution에 관한 연구)

  • Je Jae-Yong;Park Chul-Woo;Jin Sung-Jin;Park Eun-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Purpose : Electron is used for the treatment of skin cancer, breast cancer, and head and neck cancer in clinic. Our study is performed to check the isodose distribution in source surface distance(SSD)and source bolus distance(SBD)setup, nipple influence to isodose distribution of electron, junctional area isodose variation of photon and electron field. Materials and Methods : The electron dose distribution measures the diameter for 20 cm hemisphere paraffin phantom 2 made. It inserted the film between 2 paraffin phantom and it investigated it got radiation and dose distribution curve. Results : The 8% of isodose difference is with the surface distance(SSD)and source bolus distance(SBD)setup. The electon when the nipple exists inside the field, as nipple size it cuts the bolus and when it puts out and there is a possibility of getting the dose distribution which is homogeneous. When in the junction of electron and photon it uses the bolus it uses in the electron field whole, there is a possibility of getting the dose distribution which is homogeneous. Conclusion : The dose distribution decrease from the SBD setup. To reduce the influence of nipple, corresponding volume of bolus should be removed. And bolus covering all the electron field reduced hot and cold spot of junctional area of photon. In the future becomes the research which sees an effective electron therapy.

  • PDF

Patterns of Failure According to Radiation Treatment Technique in the Parotid Gland Cancer (이하선암의 술후 방사선치료시 방사선치료 방법에 따른 치료 실패 양상 분석)

  • Lee Sang-Wook;Lee Chang-Geol;Keum Ki-Chang;Park Cheong-Soo;Choi Eun-Chang;Shin Hyun-Soo;Chu Sung-Sil;Lee Suk;Cho Kwang-Hwan;Suh Chang-Ok;Kim Gwi-Eon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.16 no.2
    • /
    • pp.167-171
    • /
    • 2000
  • Objectives: To compare the outcomes of treatment with a focus on the effectiveness of the two primary techniques of radiation used for treating parotid gland malignancies. Materials and Methods: A retrospective analysis of 70 patients with parotid gland cancer treated between 1981-1997. Radiation was delivered through an ipsilateral field of high energy electron and photon in 37 patients(52.9%). Two wedge paired photon was used to treat in 33 patients(47.1%). The median dose was 60 Gy, typically delivered at 1.8-2.0Gy per fraction. The median follow-up times for surviving patients was 60 months. Results: The overall and disease free 5 year survival rates were 71.6% and 69.5%, respectively. Wedge paired photon and photon-electron treatment disease tree 5 year survival rates were 61.1% and 80.5%, respectively. Overall local failure rate was 18.6%. Local failure rate of wedge paired photon technique was higher than that of mixed beam technique. Late complication rate was 37.1%, but most of them were mild grade. Conclusion: Techniques of radiation were associated with local control. The technique of using an ipsilateral field encompassing the parotid bed and treated with high energy electrons often mixed photons was effective with minimal severe late toxicity. To irradiate deep sited tumors, we consider 3-D conformal treatment plan for well encompassing the target volume.

  • PDF

Evaluation of the usefulness of Bolus, which combines Step Bolus and 3D Bolus (Step Bolus와 3D Bolus를 combine 한 Bolus의 유용성 평가)

  • Lee, Chang-Suk;Chae, Moon-Ki;Park, Byung-Suk;Kim, Sung-Jin;Joo, Kyoo-Sang;Park, Chul-Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.79-88
    • /
    • 2021
  • Objectives: Bolus, which combines 3D-bolus and Step-bolus, was produced and its usefulness is evaluated. Materials and Methods: A Bolus was manufactured with a thickness of 10mm and 5mm using a 3D printer (3D printer, USA), and a Step Bolus of 5mm was bonded to a 5mm thick bolus. In order to understand the characteristics of Step bolus and 3D bolus, the differences in relative electron density, HU value, and mass density of the two bolus were investigated. These two Bolus were applied to anthropomorpic phantom to confirm its effectiveness. After all contouring of the phantom, a treatment plan was established using the computed treatment planning system (Eclipse 16.1, Varian medical system, USA). Treatment plan was performed using electron beam 6MeV, nine dose measurement points were designated on the phantom chest, air-gap was measured at that point, and dose evaluation was performed at the same point for each bolus applied using a glass dosimeter (PLD). Results: Bolus, which combines 3D-bolus 5mm and Step-bolus 5mm, was manufactured and evaluated compared with 3D-bolus 1cm. The relative electron density of 3D Bolus was 1.0559 g/cm2 and the step Bolus was 1.0590 g/cm2, which was different by 0.01%, so the relative electron density was almost the same. In the lightweight measurement of air-gap, the combined bolus was reduced to 54.32% for all designated points compared to 3D-bolus. In the dose measurement using a glass dose meter (PLD), the consistency was high in phantom using combined bolus at most points except the slope point. Conclusion: Combined bolus made by combining 3D-bolus and Step-bolus has all the advantages of 3D-bolus and Step-bolus. In addition, by dose inaccuracy due to Air-gap, more improved dose distribution can be shown, and effective radiation therapy can be performed.

Experimental Effects of Acanthopanax sessiliflorus $S_{EEM}$ Extracts Following Gamma-ray Irradiation on Immuno-stimulating and anti-tumor activity in mice (방사선(放射線)이 조사(照射)된 오갈피 나무의 추출물(抽出物)이 면역기능(免役機能) 및 항암(抗癌) 기능(機能)에 미치는 실험적(實驗的) 효과(效果))

  • Kim, Hyung-Woo;Han, Jin-Geun;Kim, Geo-Woong;Go, Hong-Gae;Jeong, Hyun-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2007
  • Objectives : This experimental study was designed to investigate the effects of Acanthopanax, sessiliflorus SEEM extracts following gamma-ray irradiation on immuno-stimulating and anti-tumor activity in terms of proliferation of tumor cells, thymocytes, splenocytes, and NO production from peritoneal macrophages in mice. Methods: 10AS and 100 AS were the bark powders of Acanthopanax sessiliflorus $S_{EEM}$ stems which were exposed in 10 kGy or 100 kGy of electron beam respectively. Results : Treatment with either 10AS or 100AS increased proliferation rates of thymocytes and splenocytes significantly, and treatment with l0AS also decreased proliferation rates of tumor cells significantly. Treatment with either l0AS or l00AS promoted NO production from peritoneal macrophages significantly. Conclusion : These results suggested that AS has direct inhibition effect of tumor growth and immuno-stimulating activity. In conclusion, we demonstrate that AS could be used to treat cancer patient as complementary or alternative medicine to typical anti-cancer medication.

  • PDF

Angiosarcoma of the Scalp : A Case Report and the Radiotherapy Technique (두피에 발생한 혈관육종 : 증례보고와 방사선치료방법에 대한 고찰)

  • Kim, Joo-Young;Choi, Jin-Ho
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.351-355
    • /
    • 1998
  • Cutaneous angiosarcomas are uncommon malignancies which account about 1$\%$ of sarcomas. They are found most commonly in the head and neck regions, frequently on the scalp. Although preferred treatment has been combined surgery and postoperative radiation therapy, the extensiveness and multiplicity of the lesions set limits to such an approach and the patient is often referred for radiotherapy without surgery. As the entire scalp usually needs to be treated, radiation therapy is a challenging problem to radiation oncology staffs. We report a case of angiosarcoma of the scalp, which was treated successfully by radiation therapy with a simple and repeatable method using mixed Photon and electron beam technique. Using a bolus to increase the surface dose of the scalp and to minimize dose to the normal tissues of the brain desirable but difficult technically to be well conformed to the three dimensional curved surface such as vertex of the head. A helmet made of thermoplastics filled with paraffin was elaborated and used for the treatment, resulting of the relatively uniform surface doses along the several points measured on the scalp, the difference among the points not exceeding 7$\%$ of the prescribed dose by TLD readings.

  • PDF

Fabrication of Mo Nano Patterns Using Nano Transfer Printing with Poly Vinyl Alcohol Mold (Poly Vinyl Alcohol 몰드를 이용한 Nano Transfer Printing 기술 및 이를 이용한 Mo 나노 패턴 제작 기술)

  • Yang, Ki-Yeon;Yoon, Kyung-Min;Han, Kang-Soo;Byun, Kyung-Jae;Lee, Heon
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.224-227
    • /
    • 2009
  • Nanofabrication is an essential process throughout industry. Technologies that produce general nanofabrication, such as e-beam lithography, dip-pen lithography, DUV lithography, immersion lithography, and laser interference lithography, have drawbacks including complicated processes, low throughput, and high costs, whereas nano-transfer printing (nTP) is inexpensive, simple, and can produce patterns on non-plane substrates and multilayer structures. In general nTP, the coherency of gold-deposited stamps is strengthened by using SAM treatment on substrates, so the gold patterns are transferred from stamps to substrates. However, it is hard to apply to transfer other metallic materials, and the existing nTP process requires a complicated surface treatment. Therefore, it is necessary to simplify the nTP technology to obtain an easy and simple method for fabricating metal patterns. In this paper, asnTP process with poly vinyl alcohol (PVA) mold was proposed without any chemical treatment. At first, a PVA mold was duplicated from the master mold. Then, a Mo layer, with a thickness of 20 nm, was deposited on the PVA mold. The Mo deposited PVA mold was put on the Si wafer substrate, and nTP process progressed. After the nTP process, the PVA mold was removed using DI water, and transferred Mo nano patterns were characterized by a Scanning electron micrograph (SEM) and Energy Dispersive spectroscopy (EDS).

Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy

  • Hyeongmin Jin;Hyun Joon An;Eui Kyu Chie;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 2022
  • Purpose: This study seeks to compare the dosimetric parameters of the bulk electron density (ED) approach and synthetic computed tomography (CT) image in terms of position variation of the air cavity in magnetic resonance-guided radiotherapy (MRgRT) for patients with pancreatic cancer. Methods: This study included nine patients that previously received MRgRT and their simulation CT and magnetic resonance (MR) images were collected. Air cavities were manually delineated on simulation CT and MR images in the treatment planning system for each patient. The synthetic CT images were generated using the deep learning model trained in a prior study. Two more plans with identical beam parameters were recalculated with ED maps that were either manually overridden by the cavities or derived from the synthetic CT. Dose calculation accuracy was explored in terms of dose-volume histogram parameters and gamma analysis. Results: The D95% averages were 48.80 Gy, 48.50 Gy, and 48.23 Gy for the original, manually assigned, and synthetic CT-based dose distributions, respectively. The greatest deviation was observed for one patient, whose D95% to synthetic CT was 1.84 Gy higher than the original plan. Conclusions: The variation of the air cavity position in the gastrointestinal area affects the treatment dose calculation. Synthetic CT-based ED modification would be a significant option for shortening the time-consuming process and improving MRgRT treatment accuracy.

Study on electron beam treatment on $Cu_2Se$ thin films by DC sputtering method (DC sputter방식으로 제조된 $Cu_2Se$ 박막의 전자빔 처리에 따른 특성 연구)

  • Kwon, Hyuk;Kim, ChaeWoong;Jung, SeungChul;Kim, DongJin;Park, InSun;Jeong, ChaeHwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • 현재 태양전지시장에서 비중이 많은 실리콘 태양전지는 높은 효율에 비해 제조 단가가 비싸다는 단점을 가지고 있다. 이에 비해 칼코파라이트 구조의 $CuInSe_2$ (CIS)계 화합물은 직접 천이형 반도체로서 높은 광흡수 계수($1{\times}105cm-{\acute{e}1$)와 밴드갭 조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 Cu(InGa)$Se_2$ (CIGS) 태양전지의 경우 양산화에 sputtering방식사용하고 Showa Shell에서는 대면적 CIGS 모듈 효율 13.4%를 달성한 바 있다. 현재 CIGS는 열처리하는 방법으로 selenization 공정을 사용하는데 이 공정은 유독한 $H_2Se$ gas를 이용해야 한다는 점과 긴 시간 동안 열처리를 해야 하는 단점을 가지고 있다. 따라서 이러한 단점을 보완하기 위해 본 연구에서는 전자빔을 사용하여 후속 공정을 실시하였다. 전자빔을 사용할 경우 낮은 온도에서 precursor를 처리하며 짧은 시간에 공정이 끝난다는 장점이 있다. 본 연구에서는 sodalime glass위에 조성비(Cu 60.87% Se 38.66%)인 Cu_2Se$ target(4.002"${\times}0.123$") 을 DC sputter를 이용하여 DC power를 50W,100W를 주고 Working pressure를 20,15,10,5,3,1mtorr로 조절하여 증착하였다. 전자빔의 세기 조건을 3Kv, Rf power 200W, Ar 7sccm로 전자빔 조사 시간을 1,2,3,4,5min으로 늘려가며 최적화 실험 하였고 최적화된 조건으로 $Cu_2Se$ target에 조사 하였다. 박막의 특성평가는 전자빔 조사 전/후에 대해 XRD, SEM, XRF, Hall measurement, UV-VIS을 이용하여 분석평가를 하였다. 이 실험은 $Cu_2Se$상이 자라는 특성과 표면 상태에 따라 CIGS박막을 증착하였을 때 나타나는 효율 변화를 알아 보기위한 초기 공정 실험이다.

  • PDF

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.