• Title/Summary/Keyword: Electron Lifetimes

Search Result 14, Processing Time 0.039 seconds

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.

Charge transport materials for the manufacture of OLEDs

  • Kathirgamanathan, Poopathy;Surendrakumar, S.;Ganeshamurugan, S.;Kumaraverl, M.;Paramaswara, G.;Partheepan, A.;Ravichandran, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.357-362
    • /
    • 2006
  • OLEDs are becoming established as a commercially viable flat panel display technology of choice of the $21^{st}$ century because of its lightweight, fast response time, lower thickness than LCD's and potentially low cost (1-2). For the OLEDs to function effectively, highly thermally stable materials, which offer high efficiency and long operational lifetimes are required. To achieve long lifetime, highly stable charge (both holes and electrons) transporters are essential. OLED-T provides these materials as well as fluorescent and phosphorescent dopants. This paper reports a unique patented hole injector (E9363) and an electron transporter (E246) that increases the lifetime and efficiency and reduces operating voltage. Further, an electron injector, EEI-101, which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF, which requires $580^{\circ}C$, is also presented.

  • PDF

A Study on the Residual Stress and Microstructure of Autofrettaged SCM440 High Strength Steel (자긴가공된 SCM440 고강도강의 잔류응력 및 미세구조 분석에 관한 연구)

  • Kim, J.H.;Shim, W.S.;Lee, Y.S.;Cha, K.U.;Hong, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.311-316
    • /
    • 2008
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. The purpose of the present paper is to predict the accurate residual stress of SCM440 high strength steel using the Kendall model which was adopted by ASME Code. Hydraulic pressure process was applied and thick-walled cylinders were autofrettaged up to 30% overstrain levels. Electro polishing was performed to get more accurate data. Residual stresses were measured by X-ray diffraction method. The autofrettaged surface which was plastically deformed analyzed using a scanning electron microscope(SEM). Although there were some differences in measured residual stress and numerical, there is a tendency to agree.

  • PDF

Simulation Study of Optimizing Multicusp Magnetic Line Configurations for a Negative Hydrogen Ion Source

  • Kim, Jae-Hong;Hong, Seong-Gwang;Kim, Jong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.1-250.1
    • /
    • 2014
  • A multicusp ion source has been used widely in negative hydrogen cyclotrons mainly for radioisotope productions. The ion source is designed to have cusp geometries of magnetic field inside plasma chamber, where ions are confining and their mean lifetimes increase. The magnetic confinement produced a number of permanent magnetic poles helps to increase beam currents and reduce the emittance. Therefore optimizing the number of magnets confining more ions and increasing their mean lifetime in plasma has to be investigated in order to improve the performance of the ion source. In this work a numerical simulation of the magnetic flux density from a number of permanent magnets is carried to optimize the cusp geometries producing the highest plasma density, which is clearly indicated along the full-line cusp geometry. The effect of magnetic fields and a number of poles on the plasma structure are investigated by a computing tool. The electron confinement effect becomes stronger and the density increases with increasing the number of poles. On the contrary, the escape of electrons from the loss cone becomes more frequent as the pole number increases [1]. To understand above observation the electron and ion's trajectories along with different cusp geometries are simulated. The simulation has been shown that the optimized numbers of magnets can improve the ion density and uniformity.

  • PDF

Facile Fabrication of Aligned Doubly Open-ended TiO2 Nanotubes, via a Novel Selective Etching Process, and Thier Application in Dye Sensitized Solar Cells

  • Choe, Jong-Min;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.483.2-483.2
    • /
    • 2014
  • In this study, we describe a simple selective etching method that produces noncurling, freestanding, large-area, aligned $TiO_2$ nanotube (NT) with doubly ends opened. The novel selective etching process only removed the thin 2nd bottom layer from the physically and chemically stable thick amorphous 1st top layer under thermal treatment at $250^{\circ}C$, yielding ordered doubly open-ended NT (DNT) that could be easily transferred to an FTO substrate for the fabrication of front-illuminated dye sensitized solar cells (DSCs). The DNT-DSCs yielded a higher PCE (8.6%) than was observed from $TiO_2$ nanoparticle (TNP)-based DSCs (7.3%), for comparable film thicknesses of $16{\mu}m$, despite of 20% decreased amount of dye. Intensity-modulated photocurrent and photovoltage spectroscopy (IMPS and IMVS, respectively) revealed that the DNT-DSCs exhibited electron lifetimes that were 10 times longer than those of TNP-DSCs, which contributed to high device performances.

  • PDF

A FULL CHARGE SEPARATION OVER THE TWO SAME CHROMOPHORES IN A PHOTOSYNTHETIC TETRAD

  • Osuka, Atsuhiro;Marumo, Shinji;Okada, Tadashi;Taniguchi, Seiji;Mataga, Noboru;Ohno, Takeshi;Nozaki, Koichi;Yamazaki, Iwao;Nishimura, Yoshinobu
    • Journal of Photoscience
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 1997
  • The synthesis and excited-state dynamics are described for a tetrad (ZC - ZP - ZP - I) consisting of zinc chlorin (ZC), zinc porphyrin (ZP), zinc porphyrin (ZP), and pyromellitimide (I), which upon photoexcitation provides a fully charge-separated state (ZC$^+$- P - ZP - l$^- $) with lifetimes of 230 $\mu$s in THF and > 50$ \mu$s in DMF at room temperature via a stepwise electron-transfer relay that has been detected by the ps-time resolved transient absorption spectroscopy.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.121-125
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square- and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

  • PDF

Transient Photocurrent in Amorphous Silicon Radiation Detectors

  • Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shinn, Kyung-Sub;Cho, Gyu-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.468-475
    • /
    • 1997
  • The transient photocurrent in amorphous silicon radiation detectors (n-i-n and forward biased p-i-n) were analyzed. The transient photocurrents in these devices could be modeled using multiple trap levels in the forbidden gap. Using this model the rise and decay shapes of the photocurrents could be fitted. The decaying photocurrent shapes of the p-i-n and n-i-n devices after a short duration of light pulse showed a similar behavior at low dark current density levels, but at higher dark current density levels the photocurrent of the p-i-n diode decayed faster than that of the n-i-n, which could be explained by the decreased electron lifetimes in the forward biased p-i-n diode at high dark current densities. The transient photoconductive gain behaviors in the amorphous silicon radiation detectors are discussed in terms of device configuration, dark current density and time scale.

  • PDF

Optical Properties of PbS Quantum Dots (QDs) Precipitated in Nd3+-Containing Glasses

  • Park, Won Ji;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.146-149
    • /
    • 2015
  • Silicate glasses with different $Nd_2O_3$ concentrations were prepared through conventional melt-quenching methods while PbS quantum dots (QDs) were precipitated through heat treatment. The peak wavelengths of absorption and the photoluminescence of PbS QDs shifted to the short-wavelength side as the concentration of $Nd_2O_3$ increased. The electron energy loss spectroscopy (EELS) indicated that $Nd^{3+}$ ions were preferentially distributed inside the PbS QDs instead of the glass matrix. In addition, there was no significant change in the lifetimes of the $Nd^{3+}:^4F_{3/2}$ fluorescence between the as-prepared glass ($607{\mu}s$) and the heat-treated glass($576{\mu}s$). $Nd^{3+}$ ions were surrounded by oxygen instead of sulfur and the Nd-O clusters probably acted as nucleating centers for the formation of PbS QDs inside the glasses.

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Shin, Gwi-Su;Hwang, Sung-Won;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.19-23
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square-and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.