• Title/Summary/Keyword: Electron Heating

Search Result 384, Processing Time 0.032 seconds

Microwave-Assisted Heating of Electrospun SiC Fiber Mats

  • Khishigbayar, Khos-Erdene;Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • Flexible silicon carbide fibrous mats were fabricated by a combination of electrospinning and a polymer-derived ceramics route. Polycarbosilane was used as a solute with various solvent mixtures, such as toluene and dimethylformamide. The electrospun PCS fibrous mats were cured under a halogen vapor atmosphere and heat treated at $1300^{\circ}C$. The structure, fiber morphology, thermal behavior, and crystallization of the fabricated SiC fibrous mats were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal imaging. The prepared SiC fibrous mats were composed of randomly distributed fibers approximately $3{\mu}m$ in diameter. The heat radiation of the SiC fiber mats reached $1600^{\circ}C$ under microwave radiation at a frequency of 2.45 GHz.

Properties of AZO Thin Film deposited on the PES Substrate (PES 기판상에 증착된 AZO 박막의 특성)

  • Kim, Sang-Mo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1072-1076
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. FTS system has two different facing targets. One is ZnO doped the content of Al 2 wt% and the other is Zn in order to decrease resistivity. The electrical, structural and optical properties of AZO thin films were investigated. To evaluate the as-deposited thin film properties, we employed four-point probe (CMT-R100nw, Changmin), Surface profiler (Alpha-step, Tencor), UV/VIS spectrometer (HP), X-ray diffractometer (XRD, Rigaku) and Field Emission Scanning Electron Microscopy (FESEM, Hitachi S-4700). As a result, We obtained that AZO thin film deposited on PES substrate at a DC Power of 150 W, working pressure of 1 mTorr and $O_2$ gas flow ratio of 0.2 exhibited the resistivity of $4.2{\times}10^{-4}\;[{\Omega}cm]$ and the optical transmittance of about 85 % in the visible range.

Defect structure of lithium niobate single crystals grown by the Czochralski method (Czochralski법에 의해 육성된 lithium niobate 단결정의 결함구조)

  • 김기현;고정민;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.620-626
    • /
    • 1996
  • $LiNbO_{3}$ single crystals were grown using a self-designed radio-frequency heating Czochralski crystal grower. Congruently melting composition was used and the optimum growth conditions were established. The compensated power control method was very effective to control the outer diameter of the crystal ingots within ${\pm}5\;%$. Scanning electron microscopy was performed to characterize the effect of the $Mg^{2+}$ ions on the formation of the ferroelectric domain in $LiNbO_{3}$.

  • PDF

Microwave Sintering of WC-Co Hard Metals (WC-Co 초경합금의 마이크로파 소결)

  • 송강석;김석범
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.249-254
    • /
    • 2003
  • WC-6wt%Co hard metal powders were sintered by a 2.45 GHz multimode microwave applicator in Ar atmosphere. Microwave sintering of WC-6wt%Co powder lowered the sintering temperature and shortened the processing time in less than two hours than by a conventional method. Microstructures of the sintered specimen were studied with scanning electron microscope (SEM) and no abnormal grain growth was observed. Mechanical properties were similar to the values of the specimens sintered by a conventional method. Specimen sintered at 135$0^{\circ}C$ for 30 minutes ,hewed 99%, 20.5 GPa and 8.1 MPa$\sqrt{m}$ of theoretical density, hardness and fracture strength, respectively.

Atomic Structure Analysis of A ZnO/Pd Interface by Atomic Resolution HVTEM

  • Saito, Hiromitsu;Ichinose, Hideki
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.41-46
    • /
    • 2006
  • Interfacial atomic structure (chemical structure) of a Pd/ZnO hetero junction was investigated by atomic resolution high voltage transmission electron microscopy (ARHVTEM). A misfit dislocation did not work as a stress accommodation mechanism in the ZnO(0001)/Pd (111) interface. But the periodic stress localization occurred in the ZnO($10\bar{1}0$)/(200) interface. The periodicity of the local strain coincided with that of misfit dislocation. Atomic structure image of the ARHVTEM showed that an atomic arrangement across the interface was in the order of O-Zn-Pd. It was shown that mechanical weakness of the ZnO(0001)/Pd(111) interface against cyclic heating is attributable to the absence of the periodic stress localization of the misfit dislocation.

Preparation of AZO thin film adding to Ag layer (은전도층이 추가된 AZO 박막 제작)

  • Kim, Sang-Mo;Lee, Ji-Hoon;Rim, You-Seung;Son, In-Hwan;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.385-386
    • /
    • 2007
  • We prepared the Al doped ZnO coating Ag multilayer thin films on glass without substrate heating using FTS system. The structure of multilayer thin films has Al doped ZnO/Ag/Al doped ZnO(AZO/Ag/AZO). The thickness of top and bottom AZO thin films were fixed to 50 nm, respectively and controlled the thickness of Ag thin films with deposition time. As-doped multilayer thin films were prepared at 1mTorr and input power (DC) of 100W at room temperature. To investigate the film properties, we employed four-point probe, UVNIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM).

  • PDF

Properties of AZO thin film deposited on the PES substrate (PES 기판상에 증착된 AZO 박막의 특성연구)

  • Kim, Sang-Mo;Rim, You-Seung;Choi, Myung-Gyu;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.403-404
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. ZnO doped the content of Al 2 wt% was used and the sputtering conditions were gas pressure 1mTorr and input power 100W. The electrical, structural and optical properties of AZO thin films were investigated. To investigate the as-deposited thin film properties, we employed four-point probe, UV/VIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM).

  • PDF

A study on deep level defects of GaN by TSC

  • ;;;;;;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.112-112
    • /
    • 2000
  • 직접 천이형 물질인 GaN는 그 연구가 활발히 진행되어 청색 발광 및 레이저 다이오드 구현을 이룩하였고, 열적인 안정성이 뛰어나 고온, 고출력 소자용으로도 주목받을 뿐 아니라, piezoelectric, acoustioptic modulators와 negative electron affinity devices와 같은 소자개발도 유망하다. 그러나 이렇게 다양한 응용과 물리적 특성에도 불구하고 깊은 준위의 불순물에 대한 문제는 해결되지 않은 상태이다. 많은 연구에도 불구하고 GaN에 존재하는 불순물의 성격과 그것들이 전도대에 미치는 영향에 관해서는 잘 이해되지 않고 있다. 본 연구에서는 MBE로 성장된 undoped GaN 박막의 깊은 준위에 대한 연구를 위하여 TSC 장치를 이용하여 GaN 깊은 준위를 분석하였다. TSC 실험은 77K에서 400K 사이 온도의 전류 변화를 관찰하였으며 깊은 준위의 활성화 에너지 및 포획 단면적 그리고 방출 진동수를 구하기 위하여 Initial rise method, Peak shape method, Heating rate method, Peak temperature method 등을 이용하였다. 또한 trap의 origin을 밝히기 위해서 수소화를 한후에 TSC 측정을 해보았다.

  • PDF

Physical Methods for the Identification of Irradiated Food

  • Yang, Jae-Seung;Lee, Hae-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.203-209
    • /
    • 1998
  • The development of methods for the identification of irradiated foods helps enforce national and international regulations on labelling to ensure the consumer's free choice to buy irradiated or unirradiated foods. and the availabilityof such methods may assist the promotion of international trade in irradiated food products and help prevent abuse of the technology. A number of approaches to determine the physical , chemical, microbiological and biological changes that occur in foods treated with ionizing radiation have been studied. However no single method is universally applicable. Among physical measurements, the leading methods of indentification are electron spin resonance (ESR) spectroscopy and thermoluminescence(TL). ESR is an established non-destructive method for the analysis of free radicals from their traps and TL is the emission of light from irradiated mineral extracts by heating. Viscosity of carbohydrate polymers by causing chain breaks by irradiation, measuring the impedance of potatoes and detection of gases produced radiolytically are promising techniques for identification purposes. Irradiated water-containing foods show significant supercooling when monitored with a differential scanning calorimeter (DSC), which can be applied to identifying irradiated ones.

  • PDF

Development of a diagnostic coronagraph on the ISS: progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Park, Young-Deuk;Newmark, Jeffrey;Gopalswamy, Nat.;Yashiro, Seiji;Reginald, Nelson
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2019
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a coronagraph in collaboration with the National Aeronautics and Space Administration (NASA), to install it on the International Space Station (ISS). The coronagraph will utilize spectral information to simultaneously measure electron density, temperature, and velocity. For this, we develop the coronagraph as a two-step process. First, we will perform a stratospheric balloon-borne experiment, so called BITSE, in 2019 with a new type of coronagraph. Second, the coronagraph will be installed and operate on the ISS (CODEX) in 2021 to address a number of questions (e.g., source and acceleration of solar wind, and coronal heating) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere. In this presentation, we will introduce recent progresses.

  • PDF