• Title/Summary/Keyword: Electromagnetic noise

Search Result 1,147, Processing Time 0.034 seconds

An Ultra Wideband Low Noise Amplifier in 0.18 μm RF CMOS Technology

  • Jung Ji-Hak;Yun Tae-Yeoul;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.112-116
    • /
    • 2005
  • This paper presents a broadband two-stage low noise amplifier(LNA) operating from 3 to 10 GHz, designed with 0.18 ${\mu}m$ RF CMOS technology, The cascode feedback topology and broadband matching technique are used to achieve broadband performance and input/output matching characteristics. The proposed UWB LNA results in the low noise figure(NF) of 3.4 dB, input/output return loss($S_{11}/S_{22}$) of lower than -10 dB, and power gain of 14.5 dB with gain flatness of $\pm$1 -dB within the required bandwidth. The input-referred third-order intercept point($IIP_3$) and the input-referred 1-dB compression point($P_{ldB}$) are -7 dBm and -17 dBm, respectively.

Aperture Coupled Cylindrical Resonator Oscillator (Aperture Coupled 원통형 공동 공진기 발진기)

  • 나인주;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.119-126
    • /
    • 2003
  • In this paper, a cylindrical cavity resonator oscillator with high Q factor is designed and fabricated to improve the phase noise characteristic. A cavity resonator is coupled to oscillating circuit using aperture hole. Measured results show that the cylindrical cavity resonator oscillator (CRO) for Ku-band has less phase noise than the dielectric resonator oscillator (DRO) with the same oscillating circuit. It has output power of +3.92 dBm at the center frequency 13.4015250 GHz and phase noise of -109 dBc/Hz at 100 kHz offset.

Cascode Low Noise Amplifiers with Coplanar Waveguide Structure for Wireless LAN Application

  • Kim, Jong-Ho;Kim, Ki-Byoung;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byungje;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • In this paper, low noise amplifiers with coplanar waveguide structure are presented for Wireless LAN data communication application. For comparison of microwave performance, LNAs of cascode type and balanced type using cascode cell with the same substrate and same bias conditions are designed and implemented. A cascode type of LNA shows the gain of 12.45 ㏈, input return loss of 11.63 ㏈, and noise figure of 1.52㏈. A balanced type of LNA using cascode cell shows the gain of 6.58 ㏈, input return loss of 16.6 ㏈, and noise figure of 1.18 ㏈.

Optical Noise Reduction in 1.3$\mu$m Optical Links (1.3 $\mu$m 무선광시스템에서 잡음광의 간섭 소거)

  • Lee, Duck-Ju;Seo, Joung-Hyoung;Lee, Seong-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.179-182
    • /
    • 2005
  • In this paper, optical noise is reduced using a differential detector in an 1.3$\mu$m optical wireless system which is more safe for human eye than 0.8$\mu$m optical wireless systems. The differential detector is composed of a InGaAs photodiode and a Si photodiode. This is a very simple and cost effective method to reduce the noise interference from incandescent lamps.

  • PDF

Design of a Planar Cavity Resonator for 12.5 GHz Low Phase Noise SiGe HBT Oscillator

  • Lee Jae-Woo;Kim Yong-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.153-160
    • /
    • 2005
  • In this paper, the novel microwave oscillator incorporating a planar cavity resonator(PCR) is presented to reduce the phase noise of the oscillator in a planar environment. Compared to the conventional planar( $\lambda$/4 open stub resonator), the phase noise is improved about 16 dBc/Hz @100 kHz. The design of the oscillator is based on a reflection type configuration using the low 1/f SiGe HBT transistor(LPT16ED). The output power is measured 2.76 dBm at 12.5 GHz. In this paper, the oscillator used to the PCR can be expected to provide a solution for low phase noise oscillator in microwave circuits.

Design of Parallel Feedback Dielectric Resonator Oscillator(DRO) for the Suppression of the Harmonic (고조파 억압 특성을 개선한 병렬 궤환형 유전체 공진기 발진기 설계)

  • Ko, Jung-Pil;Lee, Kun-Joon;Kim, Young-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-149
    • /
    • 2003
  • The parallel feedback dielectric resonator oscillator (DRO) which is applicable to satellite communications and broadcasting has been investigated. In the design of oscillator, the phase noise is important parameter. In this paper, The proposed oscillator has good phase noise level because it suppressed harmonics. Measurement show the fabricated oscillator is output power of about 9 dBm at fundamental frequency of 12.0 GHz and fundamental frequency suppression of -47.5 dBc. The phase noise level is about -110 dBc/Hz at 100 KHz offset frequency.

  • PDF

Twisted Differential Line Structure on High-Speed Printed Circuit Boards to Enhance Immunity to Crosstalk and External Noise

  • Kam, Dong-Gun;Kim, Joung-Ho
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Differential signaling has become a popular choice for high-speed interconnection schemes on Printed Circuit Boards (PCBs), offering superior immunity to external noise. However, conventional differential transmission lines on PCBs have problems, such as crosstalk and radiated emission. To overcome these, we propose a Twisted Differential Line (TDL) structure on a multi-layer PCB. Its improved immunity to crosstalk noise and the reduced radiated emission has been successfully demonstrated by measurement. The proposed structure is proven to transmit 3 Gbps digital signals with a clear eye-pattern. Furthermore, it is subject to much less crosstalk noise and achieves a 13 dB suppression of radiated emission. Index Terms - Twisted Differential Line, Differential Signaling, Crosstalk, Radiated Emission, Transmission Line, Twisted Pair

Performance Improvement of a Polygon Mirror Scanner Motor for Laser Beam Printer (레이저빔프린터용 폴리곤 미러 스캐너 모터의 특성개선)

  • You, Yong-min
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.854-855
    • /
    • 2015
  • Electric machines for office automation device such as printer and scanner have been required the low noise and vibration performance. Many researches about the low noise and vibration of polygon mirror scanner motor have been also progressed. The noise and vibration of polygon mirror scanner motor can be classified by aerodynamic, structural and electromagnetic. Electromagnetic noise and vibration can be occurred by high cogging torque and nonsinusoidal back EMF. To improve the cogging torque and back EMF characteristic, we apply unequal air-gap. To analyse characteristic of a polygon mirror scanner motor, two dimensional finite element method is used. To minimize the cogging torque of a polygon mirror motor, Kriging based on latin hypercube sampling (LHS) is utilized. As a result, the cogging torque and torque ripple improved while maintaining the back EMF and average torque.

  • PDF

Sound Source Investigation of Outer Rotor BLDC Motor (외부회전자형 BLDC 전동기의 소음원 규명)

  • Lee, Chang-Min;Woo, Ho-Kyun;Moon, Jung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.463-468
    • /
    • 2011
  • According to a quantum leap of the performances of automobile, environmental factors are important as functional factors, especially noise. BLDC motor, one of the part of automobile, is also no exception. In this paper, investigation of the sound sources of outer rotor type BLDC motor is performed. In order to reduce noise, it must be necessary knowing sound source. To this end, this paper is analyzed two viewpoints, structural and electromagnetic causes. For structural analysis, modal experiment and 3D mode analysis are performed. On behalf of electromagnetic analysis, 2D finite element method is carried out. Finally, coupling analysis is performed in order to know about influence between two factors.

  • PDF

An Oscillator Incorporating a Planar Helical Resonator for Phase Noise Reduction and Harmonic Suppression

  • Hwang Cheol-Gyu;Myung Noh-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.160-164
    • /
    • 2006
  • This paper describes a compact printed helical resonator and its application to a microwave oscillator circuit implemented in coplanar waveguide(CPW) technology. The high Q-factor and spurious-free characteristic of the resonator contribute to the phase noise reduction and the harmonic suppression of the resulting oscillator circuit, respectively. The designed resonator resonating at the frequency of 5.5 GHz showed a loaded Q of 180 in a chip area of only 40 % of the corresponding miniaturized hairpin resonator without any spurious resonances. The fully planar oscillator incorporated with this resonator showed additional phase noise reduction of 10.5 dB at 1 MHz offset and a second harmonic suppression enhancement of 6 dB when compared to those of a conventional CPW oscillator without the planar helical resonator(PHR) structure.